
cH190-figs Aplil1QQo 

WHAT CAN WE TEACH ABOUT 
HUMAN-COMPUTER INTERACTION 

Terry Winograd 

Stanford University 
Palo Alto, California 

ABSTRACT 

This paper is the closing address for CHI ‘90. It 
addresses the problem of educating computer 
professionals in the area of human-computer 
interaction, arguing that standard approaches within 
computer science need to be augmented and that 
new models of education can aid us in producing 
students with broad competence in the design of 
computer systems for human use. 

THE GROWTH OF HUMAN-COMPUTER 
INTERACTION 

CHI ‘90 has been an impressive event. It has 
brought together a tremendous group of people 
who are concerned with “empowering people,” and 
showed how they are making that slogan a reality. 
The diversity of topics and obvious intensity of 
interest demonstrates the strength and vitality of a 
new and growing field. 

And we may sometimes forget how new it all is. This 
conference and the research community it 
represents are a product of just the last decade. The 
first conference on “Human Factors and Computing 
Systems” was held in 1982 and the Journal “Human- 
Computer Interaction” began publication a few years 
after that. Not so long ago, there were just a few odd 
psychologists concerned with “human factors,” who 
happened to study how people used computers. 
They probably spent more of their time talking to 
their counterparts in the automobile industry than to 
people working in computing, and what they did was 
certainly not considered a part of computer science. 

We’ve come a long way in a short time. Our field is 
rapidly both growing and maturing. Now in addition 
to the CHI conference, there are a variety of 
conferences, journals, books and funding programs 
on related topics. In fact it is getting hard to know 
just what counts as a “related topic,” as concerns of 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish requires a fee and/or specific 
permission. 

0 1990 ACM O-89791 -345-O/90/0004-0443 1.50 

human-computer interaction spread throughout the 
computing world. 

I would like to attribute this success to the brilliance 
and hard work of all of you who have participated in it, 
and indeed you can be proud of many notable 
achievements. But being realistic, I have to 
acknowledge that growth and maturity are being 
forced upon us by the tide of development-by the 
persistent flood of hardware and software products 
in the marketplace, and by the changing nature of 
how they are created, purchased and put into use. 
To put it simply, a decade ago the people who 
designed computer hardware and software were 
dominated by the question “How do we get it to 
run?” They had to apply tremendous engineering 
ingenuity to the problems of getting computational 
tasks done on machines that could be reasonably 
built,programmed and paid for. 

With the advent of the personal computer, a new 
trend that had been building for years came to 
center stage. Processing power was no longer the 
central arena of competition, and the convenience 
that new machines and languages could offer to 
programmers no longer drove the market. The “look 
and feel” of a product became its dominating 
characteristic, and fortunes were made and lost 
because designers understood (or failed to 
understand) what the computer programs they were 
writing meant outside of the world of computing: 
How they were encountered by users in a context of 
work and equipment for getting things done, not a 
context of data processing and computation. 

TEACHING WHAT WE KNOW 

The urgent sweep of technology development has 
promoted the rapid growth of new paradigms for 
design, without having built adequate foundations, 
either conceptual or institutional. We in the research 
world have been struggling to catch up: to bring 
some kind of order and understanding to what we 
see going on in the world of practical development, 
and to build on this the basis for continuing progress 
and future invention. 

As a university teacher of computer science, I look at 
this from a particular perspective. Has our research 

443 



CHI 90 Proceedings April 1990 

led to the kinds of results that can be systematically 
taught and can form the basis for professional 
competence? Can our area of concerns become a 
fundamental part of edW.XtiOn in a mature computer 
science? 

This is a tall order. Computer science departments 
are not generally noted for rlespecting much of 
anything outside of theirr disciplinary boundaries. 
Over the years, computational education and 
research have focussed almost exclusively on the 
technical aspects of computing with little attention to 
the human contextual aspects that are crucial to 
effective design. Considercations of “human 
factors,” “social impacts,” and “design 
methodologies” have appeared as tangential add- 
ons to the study of “real computer science.” People 
and organizations are often viewed as an 
unfortunately unpredicl:able and messy part of the 
technological environment. With a few notable 
exceptions, computer science departments offer at 
most a token course or two on contextual concerns. 

At the same time, thinking about the role of 
technology within the broader society has moved 
towards a more cautious and directed approach to 
the design of new technologies. We have come to 
recognize that the potential benefits of a technology 
will come to fruition only when we pay sufficient 
attention to the context in which it is instituted. 

In the public discourse about computing, we can see 
a number of trends that are illustrative of this shift. 
For example, as Mike Dertouzos described in his 
opening talk, we are feeling the impact of the overall 
national concern with productivity. One of the 
primary motivations for computer technology has 
always been the efficiency it can bring to individual 
and organizational work. The “office of the future” 
has been a rallying cry of the computing vendors for 
many years. But the promises have not always been 
met and there is a large and growing critical literature 
within the business and management community, 
questioning the assumptions that have been made 
about the value of computer tools. We are 
beginning to recognize that there is an important 
difference between “efficiency,” in the traditional 
sense it has been used in computer science, and 
“productivity,” in the practical sense of getting more 
value from the work. 

There is also a growing concern about the social 
consequences of computing-a recognition that 
along with the potential for improving our work and 
lives there is also a potential for creating new 
problems and exacerbating old ones. Along with 
awe for the benefits of the information explosion we 
find increasing public concern that large safety- 
critical computer systems are not dependable and 

that there are serious potentialls for the misuse of 
information in the myriads of blossoming databases. 

What doe:; it mean, then, to educate computing 
professionals in the discipline of human-computer 
interaction’? We can approach this question in two 
parts. Clearly we need to articulate what we mean by 
“human-computer interaction”, but first let us 
consider what we are trying to do in educating our 
students at all. 

The purpose of education is to develop the 
student’s c,ompetence to take some kind of action. 
Often we lose sight of this in our eagerness to 
“transmit knowledge” or “cover the material,” but in 
the end it is the ultimate justification for teaching 
anything. However, we must be careful not to 
identify competence with a narrow vision of action- 
with the ability to write co’de in a particular 
programming language or to design efficient 
algorithms. We need to consider the broader 
domains 01 actions and effects in which our students 
will work. 

There are, of course, different career paths and 
professions within computing, which demand 
different kinds of competence. As scientists and 
researchers, we tend to see our students as young 
copies of ourselves, and we often focus on teaching 
the principles and skills that are relevant to doing 
research. This is indeed one part of the university’s 
role, but it is certainly not the only one. The vast 
majority of people we train in computer science 
(even those at the elite schools) will not go into 
academic research, but will play a variety of roles in 
the invention, production, implementation and use 
of new computing devices. In this they need 
competence in design-the activity of bringing forth 
new technologies and the practices for using them. 
To realize the potential of our students in designing 
computing systems we need to develop their 
capacity to relate the design of computer systems to 
the human activities and practices in which they will 
be embedded. 

But in relating humans and design, we must avoid 
simple answers. This is not just a matter of 
sensitivities about “listening to the users.” To 
understand what will really work we need to go 
beyond the superficial aspects of “user-friendly” and 
“seamless integration”, and pursue a deeper 
analysis of what people are doing in larger human 
and organizational contexts, and how this is 
influenced by the use of computers. 

And here we get back to the other question, which 
we put aside a moment ago: “What do we mean by 
human-computer interaction?” Webster defines 
“interaction” as “mutual or reciprocal action or 



CHI 90 Pmceedings Ppil19!30 

influence.” Clearly, humans act on computers and 
computers influence humans. But how? In what 
dimensions? We cannot be satisfied with the 
conventional view that this is a question of designing 
the “human-computer interface.” When we narrow 
our attention to the flow of activities between an 
individual and a piece of machinery sitting on his or 
her desk, we lose sight of the larger picture of mutual 
influence-the influence that our networks of 
equipment have on the way we work, live and make 
sense of our actions. 

This broader picture does not lie within the traditional 
boundaries of computer science or human factors. It 
touches on many of the disciplines that have dealt 
systematically with human activity, including 
philosophy, psychology, anthropology and the 
social sciences. But it is misleading to see the 
problem as one of offering an “interdisciplinary” 
education. We will not succeed at developing 
competence in design by turning computer 
students into amateur sociologists, amateur 
anthropologists, amateur psychologists and amateur 
organization theorists. Although it is certainly 
valuable to introduce them to the key insights that 
each of these disciplines has generated, there 
needs to be an integration-a way of turning a multi- 
disciplinary goulash into a background that makes 
sense in the context of the design tasks our 
students will encounter in the exercise of their 
profession. 

A MODEST PROPOSAL 

As a response to this challenge I want to offer an 
example of what it might mean to educate students 
in human-computer interaction. At this point it is not 
a comprehensive educational program, but a small 
experiment, which was suggested to me by Mitch 
Kapor (one of the most successful “self-made” 
software creators) and which directly embodies an 
educational approach being developed by my 
colleague Fernando Flores. 

In a letter, Kapor described his own educational 
quandary: 

“..people, such as myself (at an earlier point in my 
career) find themselves with a difficult set of 
choices, no alternative of which is entirely 
satisfactory. Existing graduate schools of 
computer science place a disproportionate 
emphasis on subjects that are not of fundamental 
relevance to design... . As communities, they lack 
the human-centered values central to a design 
oriented approach. But outside of these graduate 
schools, there is no organized professional 
training, so one is left on one’s own.” 

His proposed solution is based on an analogy with 
the education of architects, whose profession 
stands as an prime example of design-oriented 
action. A student architect begins with courses in 
the basics of the engineering disciplines that 
underlie competence at designing buildings that 
meet the physical requirements of construction and 
durability. But that is only a preparatory component 
of the training. It is accompanied by studio courses 
in which students are presented with realistic design 
problems and work out solutions in collaboration with 
experienced senior architects. These teachers (or 
perhaps they are better called “coaches”) critique 
the students’ work and help them develop their 
ideas as the project progresses. 

In this studio work, teachers and pupils look beyond 
the basic engineering domain, bringing in questions 
that distinguish architecture from engineering. They 
bring to the forefront concerns with the 
requirements people have in terms of space (both 
physical and psychological), comfort and productive 
action. To design a building well, the student needs 
to understand the activities people intend to perform 
in it and the problems they are likely to encounter. 
Knowing how to find out these things in a particular 
case is dependent on having a strong general 
understanding of how people are constituted and 
how they act, both individually and as part of a social 
organism. The studio courses serve to develop 
overall professional sensibility: a way of looking at 
the world that knows how to perceive the relevant 
features of a situation, of knowing the right 
questions to ask, of sensitization to a certain realm of 
concerns. 

This kind of education does not fit well with the 
models held by most people in scientific and 
engineering disciplines. Instead of having a well- 
defined set of theories and techniques that can be 
put into a book and mastered through a set of 
progressively more difficult exercises, the student is 
developing a vaguely-defined “professional 
sensibility.” But if we adopt a different approach to 
education, as advocated by Flores, this practice is 
not only reasonable, but takes on a central role. I will 
not be able to elaborate his educational theories 
here, but will use the example of human-computer 
interaction to illustrate their basic structure. 

The starting point is to connect learning to action, 
approaching it not as the accumulation of knowledge 
but as the process of becoming effective in a 
particular domain of action. The student achieves 
effectiveness with the help of teachers who 
introduce the relevant domains and “coach” the 
student as he or she experiences acting within it. 
This coaching is not simply a matter of giving tips and 
hints, but plays a fundamental role in building the 

445 



CHI 90 Proceedings April 19!30 

students’ ability to recognize and create in the 
relevant space of actions. 

The learning process can be described in several 
basic steps: 

1. Announcing a New Domain 

Initially the teacher introduces to the student the 
potential for learning sornething in a new 
domain. There is no way to develop 
competence without first recognizing your 
incompetence-without recognizing that there is 
some area in which your capacity for action could 
be expanded or developed. Of course the 
teacher is not operating in a vacuum. Students 
are enmeshed in a variety of other activities and 
experiences which lead them to recognize 
breakdowns and the potential for overcoming 
them. 

The emphasis here is on creating a recognition 
of possibilities that are relevant to action-in our 
case the actions associated with the design of 
computer hardware, software and systems 
architectures. in cases where such a connection 
is not evoked (as in “Take Latin, it’s good for 
your mind!“) the student does not enter with the 
kind of openness that is needed in a field which 
demands thoughtful exploration rather than rote 
mastery. 

in the case of human-computer interaction, 
there is not a single domain but a variety of 
domains in which we can articulate the effects of 
computers on humans (the “interactions”). 
Looking through the program for this meeting 
one can identify a number of different 
perspectives: 

9 Interfaces: The largest single group of 
papers and sessions is focussed on the 
question that first gave the field shape: the 
design of interfaces through which individuals 
interact with machines. Design must both take 
into account the potential for new 
technologies in a variety of media and the 
psychology of the human actors, with their 
limitations, preferences, aptitudes and failure 
modes. 

l Work Structure: In the domain of concerns 
that has at times been labeled “computer- 
supported cooperative work,” the user 
appears not as a face and pair of hands in front 
of a workstation, but as a participant in 
organized social activity, in which the use of 
computers can play a role. The question for 

design is to understand how different 
possibilities for computer augmentation will 
enhance, modify, or possibly detract from the 
effective action of the computer-using 
community. 

l Supporting Technologies: Many of the 
sessions and papers deal with the details of a 
wide variety of technologies which can be 
used in the design of systems with which 
people interact. They range from hypermedia 
and video simulations to object oriented 
programming languages, window 
management systems and structure editors. 
The domain of technical possibilities is a 
cornerstone on which design proceeds, but of 
course only one of the corners. 

l Learning: In designing a computer system it 
is not sufficient to produce software that can 
only be used by the person who built it, or by 
someone who is able to magically duplicate his 
or her understanding. Many otherwise 
excellent systems ha,ve been useless 
because they weren’t sufficiently “learnable” 
to the appropriate audience. This of course 
touches on the work structure questions as 
well, since it matters who is expected to learn 
what and how their overall work situation 
creates a situation that supports such learning. 

l Social Processes: Some of the most 
significant impacts of c:omputers systems 
stretch beyond the walls (even the electronic 
network walls) of the people and groups that 
use them. There are broader social, legal and 
political questions that are both driven by and 
shape the technology. As an obvious 
example not so far from our field, look at the 
disputes over digital audio tape, with its 
potential for distortion-free copying. The 
relevant design questions cannot be 
understood in terms of the technology, but 
must address the larger social interpretation of 
rights of ownership. Similarly, questions of 
automation and the role that computers play in 
changing the nature of work processes (either 
“deskiliing” or “informating”) are fundamental 
to computer design. 

l Design Processes: Another domain of 
concern is the self-reflective one, in which we 
observe our own activities as designers and 
then attempt to better design those activities. 
This includes both the self-reflective 
examination of what the designer does and 
the broader social analysis of the design 
process, and the many parties involved in it, 

446 



CHI 90 Proceedincs Ppill990 

2. Showing the Domain 

including designers, users, purchasers of 
workplace systems, etc. 

l Assessment Techniques: Lurking within 
the whole discussion of competence in 
design is the question of assessment-what 
constitutes “good design”? There are various 
measures that can be applied, including the 
judgment of recognized “experts”, the results 
of controlled experiments, and the success of 
a design in the marketplace. Each of these has 
its strengths and weaknesses, and part of the 
discourse within our field is an attempt to 
better design our tools for assessment and to 
understand the potentials (and limitations) for 
their application. 

This list is not a systematic taxonomy-it was 
generated in a fairly quick scan through this 
week’s program-but I hope it will evoke for the 
listeners a sense both of the diversity of 
concerns and their importance in the activity of 
design. The first step, then, is to evoke the 
student’s awareness that what appears to be a 
simple act of engineering or programming can 
be construed as an act in each of these 
domains, with consequences and possibilities 
that are uniquely visible within it. 

The teacher has not really introduced a new 
domain until the learner sees it in the real world- 
seeing conversations that are meaningful to 
people seriously engaged in their fields of 
activity. The aim here is not to ensure that the 
learner understands what he is shown. It is only 
to make certain that he or she sees a new, 
concrete domain of action. 

In the case of teaching about human-computer 
interaction within the university, this is far from 
trivial. Some domains of design, such as those 
associated with command languages, are 
straightforwardly visible to students as users of 
computer systems themselves. 

But other domains, such as those dealing with 
the social structures of work, are not familiar and 
do not show up in the kind of classroom 
computer use that makes up the bulk of their 
training. For computer science students, it is an 
eye-opening experience to talk open-mindedly 
with “real users” in a “real-world setting.” This 
need not be in an exotic place-often it is no 
farther away than the administrative personnel 
sitting in the next-door offices. But it takes a 
conscious effort to ground the recognition that 
there are whole domains of concern about how 

3. 

the specifics of design can affect people’s work, 
which do not show up in courses on compilers, 
networks or programming languages. 

Constructing an Ontology of 
Distinctions 

These first two steps are focussed on the 
experiential-on opening up possibilities in the 
student’s understanding. But there is much 
more to education than pointing out a problem 
and tossing the student in to sink or swim. The 
teacher provides what Flares calls an “ontology 
of distinctions,” or what we might more ’ 
conventionally call the “conceptual framework” 
in which to observe and act in the domain. He 
says “effectiveness in action is grounded in 
linguistic distinctions that make action possible... 
to learn, to acquire knowledge, is to become 
proficient in a language.” 

This talk is not the place to go into an extended 
discussion of what he means by a “language” 
and how it compares to more traditional ways of 
talking about “theory” and its role in practice. Let 
me just observe that this concept of language is 
quite broad, and encompasses both the 
learning of formal systems (such as the base of 
mathematics and physics that underlies 
computer engineering) and the less formalized 
but still rigorous languages that appear in the 
discourses of philosophy and social inquiries. 
The teaching of these distinctions need not be 
organized around the specific activities of the 
learner, but rather provides a background on 
which further learning can rest. The point is that 
the ontology (the framework) must support the 
relevant domain of action. For example, the 
formal knowledge of computation theory 
underlies the design of efficient algorithms and 
is useful for this, but at the same time it is not the 
framework for understanding the design of 
effective programs-those that help the user get 
something done. 

Looking again at the program of this conference, 
it is cfear that a number of different ontologies 
are relevant to the design of human-computer 
interaction. This is where the corollary 
disciplines, such as psychology, anthropology 
and organization theory, come in 

But as I mentioned above, this does not mean 
that we are training our students to be 
professional researchers in these disciplines. 
Rather, they need to have the ability to 
recognize and enter into the discourses within 
those professions that are relevant to questions 
of design. 

447 



WI 90 ProceetMgs Apill 
-- 

We face a challenge here, as there is no 
consensus in the field as to what the relevant 
domains of distinctions are or what bodies of 
existing discussion are most relevant to the 
student. The texts that exist are not oriented to 
the questions our students face, and there are 
still few people who have made the connections 
by addressing the concerns of the designer 
within the ontology of other disciplines. As the 
years go on, we can expect such writings to 
appear, and although there is unlikely to be 
anything like the near-universal consensus 
about what should go into the elementary 
training of physicists, there will be reasoned and 
productive discussion leading to much- 
improved possibilities. 

4. Ground the Distinctions in History 

Computers are new in the world, and for 
educating the people who work with them this 
brings both good news and bad news. The 
good news is the excitement of so much to be 
learned and explored. In any period of the 
modern history of science and technology, 
there are a few “emerging areas” which capture 
the imagination of a generation, entice the best 
minds, and attract substantial resources for 
development. 

But along with this there goes a kind of 
arrogance and blindness to the ways in which all 
that is new is also a reflection of what has gone 
before. I know that in my own training, there was 
an almost complete disdain for any disciplines 
that had gone before (except, perhaps 
mathematics). All of those old linguists, 
philosophers, psychologists and even electrical 
engineers were simply irrelevant as the march of 
computerized progress swept their old- 
fashioned concerns and theories into the 
dustbin of history. 

Well, it isn’t quite that simple, and I think that after 
a few decades we are beginning to acquire a bit 
more perspective and a bit more humility. 
Computers may be millions of time faster and 
larger and cheaper, but people are still people, 
organizations are still organizations, and work is 
still work. When we look at domains outside of 
the narrowly technical, much of what we need to 
be concerned with is not unique. It has its own 
special shape due to the particularities of 
computing, but everything from user interfaces 
to legal ramifications have clear correlates in 
many other technical (and even non-technical) 
enterprises. 

As part of introducing the student to new 
domains, the teacher makes the domain 
available as a historical conversation which 
distinctions have been invented and in which 
that learner can become a participant. This is not 
just a rnatter of “history appreciation” but plays a 
direct role in the student’s potential for 
contrib,uting to the discipline. The historical 
discourse both provides a map of the paths and 
blind alleys that have been trodden before and 
reveals the ways in which progress is made. 

5. Practice for Competence 

The key to the learning process is that the 
student has the opportunity to make sense of 
new distinctions in the practice of action. 
People are not able learn by simply hearing the 
relevant distinctions and theories, but need to 
ground them in practice. Even the most 
traditional modes of teaching are based on 
“exercises.” 

The idea that learning how to design requires 
practice is not very surprising or novel. It is 
common in computer science curricula to find 
“project courses” in which students take on 
individual or group projects of relatively large 
size (relative to the exercises in other course 
work). The aspect I want to emphasize is the way 
that teaching is structured to relate the project 
experience to the relevant domains of 
distinctions. 

It is all too easy in teaching a project course to 
simply extol the value of experience or some 
kind of “mysterious” transfer of expertise. It can 
be quite a bit harder to design the experience 
and the associated coaching to develop 
competence in a more systematic and rigorous 
fashion. The teacher is doing much more than 
simply providing an experiential opportunity and 
then acting as a cheerleader and final evaluator. 
In working with the learner, he or she is building 
the learner’s capacity to be an observer of his or 
‘her own action. This requires using the specifics 
of the project to trigger opportunities to 
introduce distinctions, make new concerns 
visible, and demonstrate the appropriate use of 
formal tools. In the architect’s studio course, the 
teacher works with the students in an ongoing 
way, in the context of the designs that they are 
evolving. 

To do this, of course, the teacher must already 
have had the experience and’teaching to be a 
competent actor in the domains being taught. 
Someone who has designed software with a 
narrow concern for algorithmic elegance and 

448 



CHI 90 l’mceedngs April 19!30 

efficiency is unlikely to be an adequate coach in 
questions concerning the way people in a work 
setting will use a given tool. There is clearly a 
bootstrapping problem here-the kind of 
proficiency we are trying to develop is not one 
that is widely shared or recognized within the 
profession. There are seas of good sensibility 
and peaks of brilliance here and there, but it will 
take a good deal of collective work before this 
can be gathered into a coherent curriculum and 
made widely accessible. 

The opportunities for providing a suitable 
practical experience themselves are at times 
limited within the university context. The highly 
bounded nature of academic coursework makes 
it very difficult to set up a situation in which the 
students are committed to practical results for 
the users. But without this, it is hard to justify the 
kind of effort required by the potential user 
community to interact with the designers 
sufficiently to reveal the less superficial aspects 
of the design. If the outcome is simply a student 
project, the tendency is to pick projects that are 
grounded within the student’s own life and 
experience, which is far from representative of 
the larger arena of computer use. 

The experiment which I am advocating, then, is 
to create a course on human-computer 
interaction in which students are challenged to 
develop competence in design through a 
process of guided learning. There are many 
difficulties to be overcome, and many creative 
possibilities. Some departments (for example in 
Scandinavia) already offer courses that put 

students into a computer application context 
outside the bounds of their academic world. 
Others, such as a course at Carnegie-Mellon, 
ask the students to find a “real user” for whom 
they will build a small system. There are also rich 
possibilities for cooperation between the 
university and the computing industry, in which 
the actual design enterprise becomes a 
resource for teaching, and experienced 
designers outside of academia can participate in 
the coaching. The exact form of such courses is 
yet to evolve, but the framework presented 
above offers a sense of direction. 

I see this, then as the challenge for the second 
decade of the field of human-computer interaction. 
In order to bring our concerns and our 
understanding into the center of computer science 
education, we need both to get our own act 
together and to get-computer science to shift Its 
center. In doing this we have one tremendous ally- 
the external pressures that society and the 
computing industry will be generating to educate our 
students to a level of design competence that is all 
too rare today. But pressure alone doesn’t make a 
dent, unless it has a sharp point on which to push. 
You here at this conference are on the cutting edge 
and are honing that point. I look forward to fhe 
breakthroughs that will come. 

BIBLIOGRAPHY 

Mitch Kapor, Personal Communication. 

Fernando Flares and Michael Graves, Education, 
Emetyville CA: Logonet, Inc., 7986. 

449 


