

Transforming the Content Management Process
at ibm.com

Abstract

This case study explores the evolution of the Franklin
Content Management System, developed by IBM’s
Internet Technology Group. Franklin began as a
technology-driven process to provide a web content
management solution with the following goals: content
reusability, simplified management of content and
design that enforces integrity and consistency, the
customization of content to individual users, and the
delivery of content to a variety of display devices.

These goals were met in part by the decomposition of
information into reusable fragments represented in
XML. This approach provides unique opportunities in a
content management system. However, it also raises
some interesting challenges in the deployment of such
a tool and the education of its users.

The development of Franklin evolved over a two year
period and has culminated in the deployment of 62
country portals within the ibm.com domain.
Furthermore, concepts from the Franklin project are
influencing the strategy and design of IBM offerings.

Keywords

Software development, content management, content
reuse, information architecture, XML, XSL, DTD, object
dependency, web publishing, customization.

Louis Weitzman
Internet Technology Group, IBM

1 Rogers Street

Cambridge, Ma O2142
louisw@us.ibm.com

Dikran Meliksetian
Internet Technology Group, IBM

150 Kettletown Road

Southbury, Ct 06488

meliksd1@us.ibm.com

Nianjun Zhou
Internet Technology Group, IBM

150 Kettletown Road

Southbury, Ct 06488

jzhou@us.ibm.com

Sara Elo Dean
ibm.com, IBM

Laajalahdentie 23

00330 Helsinki, Finland

elodean@fi.ibm.com

Kapil Gupta
ibm.com, IBM

17 Skyline Drive, Bldg 2

Hawthorne, NY 10532

kapil@us.ibm.com

Jessica Wu
Internet Technology Group, IBM

150 Kettletown Road

Southbury, Ct 06488

jessicaw@us.ibm.com

Permission to make digital or print copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage; the copyright
notice, the full citation of the publication, and its date appear; and notice is given that copying is by
permission of AIGA. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission. This material is co-published with permission in the Association for Computing
Machinery Digital Library.

©2002 American Institute of Graphic Arts
Experience Design Case Study Archive

2

eparation of content and design is supported by
dustry standards of XML and XSL. In addition,
 standards were used to comply with standard
net protocols for communication and

Industry/category

Software development in the area of content
management including information fragmentation,
customization and delivery to multiple devices

The s
the in
other
inter

Industry Standards within
Franklin:

XML: Extensible Markup
Project statement

This project began as a technology-driven process for a
new class of web content management system. It was
motivated, in part, by past research [14], and the
notion that designers cannot be present at all times in
the dynamic environments in which we now live.
Designers must create meta-designs, or
representations of designs, to be used in the interactive
and personalized delivery of information. This ability to
provide "agile publishing" [5] challenges the standard
practices in the design community. So this case study is
not so much about an artifact, but rather, it is about
supporting a new process of design.

This project was guided by the following principles: 1)
the fragmentation of content into reusable document
components, 2) the separation of the content from the
design, 3) the conformance to industry standards, and
4) the presentation of a simple and understandable
user interface. The result is Franklin, a unique web
content management system now in use on all of IBM’s
country portals [6]. Over time, the project has evolved
into a user-centered process as Franklin currently
supports nearly 100 users worldwide.

The fragmentation of content in Franklin is supported
by Trigger Monitor [3, 8], a core component of IBM’s
Olympic web site architecture. Trigger Monitor
maintains the dependency of fragments within sites and
automatically republishes any page when one of its
component fragments gets modified.

representation (see sidebar).

A strong guiding principle in Franklin’s development
was to hide the details of the underlying data
representations from the user. The solution provides a
form-based interface for editing XML documents. This
form is automatically created from DTDs and presents
fields for only the data the user needs to edit. Other
data is hidden or automatically generated by the
system.

Project participants

This project relied on participants from a wide variety
of disciplines. In order of appearance, members of the
team and their roles: system architects created the
initial software design, programmers and designers
implemented the system, usability engineers helped
identify problems with the user interface and the
system, information architects designed the document
types, stylesheet implementers created the style
sheets, business developers built a business case and
found potential users for the system, project managers
oversaw the deployment, content editors migrated
existing content and created new content with the tool,
geography coordinators guided the deployment of
country sites, and system administrators managed user
profiles, system backups and ensured the system was
up and running 7 by 24. These participants were part of
a worldwide effort helping make the project a success.

Project dates and duration

The project began with the design of a prototype
content management system in Fall 1999. By Fall 2000,

Language (XML) is the universal
format for structured documents
and data on the Web. [1, 9]

XSL: Extensible Stylesheet
Language (XSL) is a language for
expressing stylesheets. It consists
of three parts: XSL
Transformations (XSLT), a
language for transforming XML
documents; the XML Path
Language (XPath), an expression
language used by XSLT to access
or refer to parts of an XML
document; and the XSL
Formatting Objects (XSLFO), an
XML vocabulary for specifying
formatting semantics. [2, 10]

DTD: Document Type Definition
(DTD) provides a means for
defining the structure, content
and semantics of XML documents.
This standard has evolved into
XML Schemas. [11]

HTTP: Hypertext Transfer
Protocol (HTTP) is the protocol for
communication on the web. [12]

WebDav: Web-based Distributed
Authoring and Versioning
(WebDav), is a set of extensions
to the HTTP protocol to support
users to collaboratively edit and
manage files on remote web
servers. [13]

 3

a working prototype had gone through initial pilots and
two user studies. Further iterations improved the
application, Then, in December 2000, ibm.com signed
on to use Franklin in their portal customization project.
Four initial countries were chosen as test cases to try
out the system. These countries launched their portals
in March of 2001. By January 2002, all 62 countries
now publish their content with the Franklin system.
Franklin manages over 13,000 document fragments.
Additional work is ongoing for content customization
and specialized delivery to different devices. Plans are
in place to incorporate the ideas from Franklin into IBM
offerings in 2002.

Design and development process

Franklin started as a technology vision of the Internet
Technology Group. With the ibm.com engagement it
evolved into a user-centered process. The development
team began by building a prototype technology.
Brainstorming lead to new features and problems were
addressed as they arose. As Franklin reached an
installed user base, the joint development and
deployment team focused on user support through
education, a problem tracking database, and updates to
the tool.

Figure 1 illustrates the five project phases:

Phase 1: Software design and development. Focused on
the building of a working prototype.

Phase 2: Pilot and usability. Evaluated the feasibility
and usability of the prototype in the hands of users.

Phase 3: Information architecture. Defined the
document types and corresponding stylesheets of the
application.

Phas 4: Deployment. Rolled out the system worldwide.

Phas 5: Extensions. Enhances the system’s capability
to cu tomize content to different audiences and to
serve content to multiple device types.

Phas

The d
on th
phas
week
prog
beca
to en
modu

The s
the d
the n

Phas

In th
evalu
imple
team
proce
Since
proce
cons
imme

The u
settin
differ

1) an

Figure 1. Project phases within
Franklin

e

e
s

e 1: Software design and development

evelopment team was spread across several cities
e East Coast of United States. In the design
e, this separation proved difficult and called for
ly face-to-face meetings. As the project
ressed and the design solidified, working dispersed
me easier. In fact, the physical separation helped
force the programmatic separation of the software
les of the system.

oftware development phase continues today, as
evelopment team rolls out new releases to meet
eeds of the growing user base.

e 2: Pilot and usability

e pilot and usability phase, content editors
ated an early version of the client application
mented in Java. This helped the development
 to better understand the content management
ss and how well Franklin supports this process.
 the content editors were brought into the design
ss early on, the development team was able to

ider all feedback and integrate most of it
diately into the prototype.

sability tests were conducted in a workshop
g totaling approximately 15 participants with 9
ent scenarios. The workshops included:

 overview of the goals of the project,

 4

2) a set of pre-workshop questions, to determine the
background and job responsibilities of the evaluators so
we knew which scenarios are most realistic for them
and to get some initial reactions to the Franklin
concept,

3) training scenarios, with related questions, to be
completed by the participants in class,

4) homework scenarios, with related questions, that the
participants could take home to work on at their own
pace, and

5) final evaluation questions to be answered after all
the exercises were completed.

The typical, initial response to the tool was that it
seemed very complicated but after a couple hours
working through the scenarios that view changed. Most
users were able to perform all the tasks and actually
found the tool to be easy to use. A final report was
delivered that was a compilation of the scores for each
of the various tasks and overall UI recommendations.
Comments from the participants in the studies are
described below. Users liked Franklin because it:

• Publishes data in as many different formats as desired

• Solves the problem of data maintenance on the web

• Stores data in XML

• Provides the ability to publish content without the help
of developers

• Provides the ability to change content once and have
the changes appear in multiple places

• Provides the ability to convert product data to non-web
platforms

• Provides the ability to preview content

• Allows the sharing of fragments

• Provides better organization of content/data via
standardization

Users’ dislikes fell into two categories: Minor irritations
that made the basic tasks more difficult, and major
issues that were related to the new paradigm of
content management. The lack of development time to
implement a consistent user interface caused many of
the initial minor complaints. Most of these issues have
been addressed in later development. Some of the
major issues and their solutions are listed below:

Conceptual model of Franklin. Web editors are
accustomed to thinking of content as pages on a web
site. A conceptual shift is necessary in order to
understand the purpose and workings of a fragment-
based approach to content management. A strong
educational component was designed to make this shift
easier.

Working offline. Content editors need to be able to
work disconnected from the network. The Java
standalone client was selected as the client interface for
ibm.com. For working off-line, it is more appropriate
than a web browser-based solution implemented in
HTML and Javascript.

Code and data updates. The installation of the client
application needs to be very simple. Code upgrades and
bug fixes need to be distributed without significant
impact on current users. A simple installer application
and an automatic updater were created. The updater
downloads any necessary code and DTD changes
seamlessly at startup to each client application.

Finding documents. Content editors are accustomed
to tools that represent a web site as a directory
structure that can be browsed to find files. A new
browse facility was incorporated into Franklin so that

 5

users can explore documents on the server with a tree
view without having to specify a search expression.

Support for multiple languages. IBM content editors
author content in the languages of their country.
Franklin was enhanced to display the user interface in
the native language of the editor (including right-to-left
display for Hebrew, and double-byte characters for
Japanese, Chinese and Korean). After this feature was
implemented, the requirement was relaxed to only
display help strings in the native language and all other
text in English.

User profile management. Two content editors may
share the same workstation. In addition, passwords
must expire according to the IBM security guidelines.
Franklin was modified to enable multiple distinct
profiles to coexist on a single client machine and to
enforce the change of user password at regular
intervals.

Phase 3: Information architecture

During the content definition phase, the Franklin
development team and the ibm.com team developed
the document type definitions (DTDs) and the
stylesheets (XSLs) to model and present the content in
Franklin. The overall process for deploying and using a
Franklin-based system is shown in Figure 2.

All 62 countries and the 30 languages share the same
document types, which include the home page, manual
and automated index pages, news articles, contact
pages, legal pages and general purpose pages. After
considerable optimization to reuse data types as much
as possible, 15 fragments and 12 servable document
types were defined.

ibm.com mandates strict worldwide design standards,
revised bi-annually. Although content guidelines exist
as well, no rigid content standards have been
previously enforced. Because each country had used
their own content creation tools, no mechanism has
existed to force pages to conform to a given structure.
With the launch of Franklin, the pages were codified as
DTDs for the first time.

After a number of iterations, the team focused in on the
initial document types. As the project matured,
however, it became clear that the initial set of sample
documents had not accurately represented all the
variations in the countries. For example, some
countries use more than one contact name or a dateline
in a news article. Therefore, the DTDs had to be
adjusted as new countries rolled out. These
modifications became more difficult over time because
any change had to ensure that existing documents still
complied with the updated DTDs. The tweaking of DTDs
made it necessary to build tools to migrate content
from the old definitions to the new definitions.

Stylesheets also followed an iterative design process.
Since Franklin treats stylesheets as document
fragments, any time a stylesheet changes all
documents that rely on that stylesheet are updated. It
was, therefore, very important to optimize stylesheet
usage.

Initially, one stylesheet defined the layout for one
document type with the elements specific to a county
extracted into a separate stylesheet. As more countries
adopted the system, common elements and exceptions
became more obvious. When the structure of a
document in a country was different from the norm,
and would have resulted in an exception to the
stylesheet, the country was asked to conform. Only in

Figure 2. Workflow for the
deployment and use of
Franklin.

 6

cases where the structure was judged to be of
significant strategic value to the local circumstance was
the exception allowed and encoded into the stylesheets.

During the roll-out, the stylesheets were restructured
by extracting into separate stylesheets the common
elements to all countries and languages, the common
elements to a particular country and language, the
common elements to a particular document type, and
the unique elements to a particular document type in a
country.

The significant effort of redesigning the stylesheets
mid-stream paid for itself many times over. To
accommodate a change today, only the relevant
stylesheet is modified and thus only the corresponding
output pages are automatically republished.

Phase 4: Deployment

The deployment phase consisted of a very aggressive
schedule to train, migrate and launch all 62 portal
countries in the ibm.com domain. This phase began
with the selection and setup of the appropriate
hardware infrastructure based on hardware sizing,
scalability tests and the number of expected users.

The engagement with each country began with an
executive letter to the general manager and the
marketing and web management teams. Next, an initial
conference call with the country web management and
the ibm.com team ensured that any questions were
answered in person. On the same call, the launch
schedule was drafted and people identified to attend
training.

The formal training materials were developed together
with IBM Learning Services. Two components ensure
appropriate focus: a two-hour management briefing

informs country management about the benefits of the
overall project, XML, and Franklin, and demonstrates
the client application. The editor training includes an
additional four hour hands-on exercise session which
practices the typical content management tasks.

The first training session was conducted in person for
editors from Canada, Chile, India and Switzerland. The
subsequent sessions were “e-meetings”, a web based
conference on the IBM Intranet that allows trainees to
follow the trainer’s desktop through a web browser
while following along the written course material and
listening to a telephone conference call. This method
enabled efficient worldwide training. Only in a few
cases did poor network connectivity keep an editor
from joining the e-meeting.

Migration of content began after training. The initial
countries created between 20 and 150 fragments each.
After launching 25% of the countries, the ibm.com
team engaged migrators in order to keep up with the
aggressive launch schedule. The editors were still
responsible for the most visible sections of the site to
ensure practice. In a few cases, due to absence or
change in personnel, a country editor did not migrate
any part of the site and thus did not acquire sufficient
skills prior to launch. ibm.com has had to provide
additional one-on-one post-launch training. Looking
back, a country should have been required to acquire
Franklin skills during migration so that once the site is
live the content editors have the necessary skills.

During the deployment phase, the profile of those who
interact with Franklin changed. Developers and testers
were replaced by web editors, migrators, and
administrators from ibm.com. The software tools also
changed in this phase. Software modeling tools
(Rational Rose) and application development

 7

environments (VisualAge for Java) were replaced with
the Franklin user interface and XSL development tools,
(XMLSpy and Emacs), and a problem tracking database
(Lotus Notes).

Phase 5: Extensions

As the deployment phase of Franklin ends, ibm.com is
defining the next features to roll out to the 62 country
portals. The extensions planned for 2002 include
content customization and delivery to wireless devices.
While the Franklin design includes this functionality, the
development team is working closely with the ibm.com
team to ensure that the system supports the specific
ibm.com requirements in these two areas.

Content customization has been piloted on the Sweden
portal [7] starting in January 2002. The top-level pages
present tailored content to users, who set their
preferences for a country, language and area of
interest.

The biggest implementation challenge was the
extension of the existing DTDs and XSLs in such a way
that un-customized and customized versions of
documents can co-exist in Franklin. The customized
content was modeled as a separate fragment and
included in documents.

Another extension to Franklin will allow the delivery of
ibm.com content to wireless devices. Again, the
ibm.com DTDs and XSLs will be adjusted. DTD
templates will be extended to accommodate content
appropriate for the small display of cell phones and
PDAs. For example, a content editor may input
shortened abstracts of news articles or event
announcements. New XSL stylesheets will produce
various output formats such as WML and HDML. Since

the design of Franklin allows multiple stylesheets to act
upon existing content, this feature will require no
system redesign.

Solution details

Two key decisions drove the design and extensibility of
the Franklin prototype. The first was to embrace the
industry standard XML. This means that all information
within the system is stored as XML. DTDs define the
allowed types of documents available to the users and
XSL stylesheets transform those documents into the
appropriate presentation format. In addition to serving
as the data description language, XML is used as a
means of communication between Franklin system
modules.

The second decision was to create an architecture
where components of information are reused
throughout the system. Franklin defines the most basic
documents as fragments which can be reused wherever
they are needed. These fragments of information
contain data as well as meta-data describing the
fragment itself. Servables are fragments that contain
additional information to produce one or more final
published page.

To support this notion of information fragments, the
Franklin architecture solves some of the basic problems
this new approach creates. These problems include:

• How does a content editor search, find and reuse a
previously created fragment based on its attributes?

• How is the dependency information between fragments
maintained, and what happens to the dependents when
a fragment is modified?

• How is the association between content and style
maintained in the system and what happens when a
style change is made?

 8

• How is the complex internal structure of the XML
fragments hidden from the content editors?

The Franklin system architecture consists of five
interrelated components (Figure 3):

1. A meta-store database that stores the information
about the documents,

2. A dependency manager, Trigger Monitor, that
maintains dependencies between documents and
invokes the necessary actions based on this relation,

3. The file system where the documents and assets are
stored,

4. The server that coordinates the activities within the
system, and

5. Client applications that allow users to create and edit
the documents.

1. Meta-store

The meta-store maintains information about the
functional and semantic role of content fragments. It is
a relational database (DB2/UDB) that maintains state
information and enables fast searches.

The meta-information of a document consists of
system-generated elements, e.g. document type and
last modifier, and elements filled out by the user, e.g.
title and summary as well as meta tags such as
keywords and audience segment. After a user edits a
document and checks it into the system, the system
automatically fills out the special system elements. The
system then maps elements of the XML document to
tables in the meta-store. The additional meta-tags are
useful in customization as well as in search and
retrieval of documents.

Figure 3. This diagram illustrates the 5 components of the
Franklin system architecture.

2. Fragment dependency store

The fragment dependency store builds upon Trigger
Monitor, technology from IBM Watson Research [3, 8].
Trigger Monitor was originally designed to manage high
numbers of rapidly changing HTML content fragments.
By maintaining an object dependency graph, a directed
acyclic graph, Trigger Monitor can efficiently update
only the pages in an information space that need to be
republished.

Trigger Monitor allows the use of specialized functions
to perform tasks specific to a particular application.
Using this feature, Franklin extends Trigger Monitor to
maintain the dependency between XML fragments and

 9

the association between content and style. It also
provides the methods to efficiently process the effects
of a change in a content fragment or stylesheet.

3. File system

All documents are stored in the file system as XML files.
Images, style sheets and other assets are stored in the
file system as well.

4. Franklin server

The Franklin server manages the communication
between the components of the system. When a
document is checked into the system, it is added to the
object dependency graph and a publish command is
issued to the corresponding Trigger Monitor function.
Multiple stages in the publishing process are possible.
The ibm.com architecture uses two stages, one for
preview and one for production.

5. Franklin client

One of Franklin’s goals is to hide the complexity of the
underlying XML representation from the content editor.
This allows editors to create and edit content without
worrying about the implementation of the underlying
language. To achieve this goal, the Franklin client
application presents a form-based interface to the user.
In order to make the form sensitive to the type of XML
element, the DTDs include attributes that indicate the
type of interface component to display. For example,
some elements are filled out by the system and are not
displayed. Text elements entered by the user can be
either single-line, multi-line or large text areas. Choice
elements are presented as drop-down menus.

Because of the strict way the interface is constructed,
the user interface knows when an element is required
and highlights it appropriately. If a document is
incomplete, the interface alerts the user and prevents

checkin. Therefore, only well-formed and valid
documents are submitted to the server to be
processed.

Franklin provides access control through role
assignment. Different roles provide access to different
document types and publish directories. In addition,
Franklin profiles can control language and country
settings. Although Franklin does not support full
workflow management internally, it has been hooked
up to an external Lotus Notes-based workflow engine to
control and sequence users’ tasks.

The typical interaction sequence with Franklin is shown
in Figure 4. The user can either create, checkout or
open a locally saved document. This brings the
document into the user interface to be modified. Once
changes have been applied, the user can either preview
without checking the document in, save it locally for
offline editing, or check it into the system. The user
must then review the document to verify the final
layout of the fragment. Finally, the user publishes the
document.

Authoring a news article in Franklin

A typical document in the IBM portal customization
project is the news article. This document type has the
largest number of instances within Franklin. This
section illustrates how a content editor authors a typical
news article. Figure 5 illustrates the end-to-end process
of transforming DTDs into the final web pages. Figure 6
shows a news article being edited in Franklin. Figure 7
shows the resulting page generated from the news
article, while Figures 8 and 9 depict a news index page
and a home page that include partial content from the
news article.

Figure 4. User interaction
sequence within Franklin

 10

Figure 5. The process of creating a document in Franklin starts with the DTD and proceeds to the final presentations

End-to-end process of creating a document

The creation of a document starts with the DTD. This is
read into the Franklin client and converted into a form
that the content editor can fill out. When the document
is complete, it is checked into the system. An XML file
is created and saved to the file system. Parts of the
document are also indexed in the meta-data store so
that it can later be searched. The XML document is then

used as the starting point for a number of XSL
stylesheets to create documents for different
presentation contexts. On the web, a final news article
page is produced as well as two other pages that news
article contributes to, a news article index page and the
home page with links to recent news articles. Meta-data
queries generate these pages automatically. Additional
pages may be produced for other devices.

Authoring a news article in Franklin

 11

Figure 6. Form-based user interface automatically generated from document definitions (DTDs).

The Franklin Editor

The Franklin Editor is a Java
standalone application. The
application is divided into two
panes. The upper pane lists
documents currently or recently
worked on. The lower pane is the
input form where an individual
document is created or modified.
The DTD is translated into this
simple form that the user can
easily fill out. Here, a news article
is being edited. In a DTD,
elements can either be required
or optional, and they can occur
one or more, or zero or more
times. If an element is required,
the interface highlights it in
yellow. If it can appear multiple
times, -/+ buttons appear next to
the widget to create additional
copies, as seen in Figure 6.

Authoring a news article in Franklin (cont)

 12

Figure 7. The news article is presented on the live site.

Figure 8. The news article title, link and abstract are rendered
automatically on the news index page.

Figure 9. The news article title and link are rendered
automatically on the home page.

Benefits of Franklin

Franklin established a number of challenging goals at
its inception. A powerful paradigm for content
management results when merging the two main goals,
of 1) the separation of content and design, and 2) the
fragment-based document model.

The separation of content from design enables:

• Easy maintenance of content. Content is modified in
one fragment and the update is automatically reflected
in all relevant pages.

• Easy maintenance of design. Design rules are encoded
and stored centrally which increases the integrity of the
overall design strategy. It guarantees a strong and
consistent brand across different sites.

• Easy delivery of content to new devices. The launch of
new portals based on the same content is simple.

Authoring a news article in Franklin (cont)

News article pages

The XML news article is
transformed into the HTML news
article shown in Figure 7. This
page includes a subfragment that
describes the left navigation bar.
Related links, on the right of the
page, are included in the XML
news article itself.

In addition, a pointer to this
article is automatically placed on
a news index page, in Figure 8,
and on the home page, in Figure
9. A query to the meta-store finds
the relevant news articles to
include on these two pages. The
relevance is determined by the
type of news story as well as the
publish and expiry dates entered
by the editor.

 13

A fragment-based document model enables:

• Reuse of content within and across sites. There is no
limit to the reuse of fragments.

• Intelligent update of modified content. When a piece of
content is updated, all dependents of that content, and
only those dependents, get automatically and efficiently
updated.

• Intelligent update of modified designs. Designs are
embodied in the stylesheets which are treated like any
other fragment. When a stylesheet is updated, all
content that relies upon that design is also
automatically updated.

• Reuse of content for customization to audience
segments. The fragments of information, when properly
tagged, support customization of content to audience
segments.

Technical accelerants

The Franklin system is built on industry standards
wherever possible. In addition, the system relies
heavily on Trigger Monitor. These technologies both
enabled and constrained the implementation process.
As the prototype progressed, the underlying industry
standards also changed incorporating new
programming interfaces. As a result, the system
needed to be reengineered as it matured. For example,
today XML Schemas are replacing DTDs as the
prevalent document type description.

Trigger Monitor was originally designed for HTML and
was not as efficient in handling XML objects. Franklin
requirements drove innovation within Trigger Monitor to
more efficiently handle XML internally. Franklin has
motivated other projects within our group.

One technological hurdle was the mapping of XML into
the meta-store. As a solution, the team devised a

generic and efficient way to map XML to and from
databases using industry standards transformation
processing.

Post-launch results

The overall impact and impression of the Franklin
prototype varies depending on the individual’s
perspective. From the point of view of the corporation,
the roll-out has been very positive. All of the country
portals are now using the tool and publishing their site
using XML and XSL stylesheets. The site statistics as of
January 2002 are:

• 62 total country portals have launched

• The resulting 66 websites comprise 5340 pages

• 13170 fragments exist in 30 languages

• 93 content editors worldwide add approximately 50
pages per day

Soon, the portals will be able to customize content to
audience segments and publish to a number of different
devices. In addition, cost savings have been realized in
a number of different areas. These include:

• Infrastructure and application hosting. The content
for all country portals is now hosted and supported on a
single infrastructure instead of 52 infrastructures
distributed worldwide.

• Skill set reduction. Franklin necessitates a simpler
skill set for content creation. No special skills are
required in the countries for creating content or
deploying visual design updates, as those skills are now
centralized within the ibm.com team.

• More efficient content sharing. Shared content is
created once and used multiple times, rather than
being copied for each site. The fragment-based content
model is well-suited for content sharing by the globally

 14

dispersed community of editors and will provide a
foundation for further enhancements.

• More efficient redesign. ibm.com updates its site
design approximately twice a year. Storing content in
XML and rendering with centrally managed stylesheets
significantly reduces the costs associated with this
activity and enables tighter control over the design and
overall user experience.

From the end user perspective, Franklin has radically
changed the way the end users and the country web-
masters work. Initially, they faced conceptual and
motivational hurdles that needed to be overcome.
When armed with proper education and hands-on
experience, the users were able to overcome these
initial difficulties. Most have come to appreciate the
long-term benefits of modifying their past practices.

The new system has both reduced redundancy and
created extra steps in the daily tasks. For example, the
method of creating and updating news articles is now
faster and more efficient, due to the form based
interface, timed publishing and automatic archiving.
Communication specialists do not have to rely upon
web-masters to handcraft individual pages but can now
upload the content directly.

On the other hand, the management of the country
home page is now slower and more cumbersome. The
home page DTD design decisions made in the
information architecture phase were based on a sample
of countries that were not fully representative. As a
result, only a few countries can take advantage of the
features in the home page management process.

The interface design has received mixed reviews from
end users. On one hand, long and complex pages are
now easier to update as the contents are presented in a
form. On the other hand, HTML-savvy editors feel

restricted by the fact that they can no longer control
the layout of the page or create free-form HTML. In
addition, because of constraints during development,
the user interface does not offer the basic operations of
most applications. For example, find and undo are not
supported. These would make the interface easier to
use.

Another inefficiency in the content management
process could have been avoided with a better analysis
of the team’s organization in the various countries.
Each country team should have been modeled as a
group, with individuals having privileges to unlock or
delete documents of other group members. Currently,
no member of a country team can take these actions
and have to request an administrator for help. End
users find this aspect inefficient. On the other hand, the
centralized infrastructure is more reliable, so publishing
errors and delays have decreased since the migration.
Overall, end users find they lose time in some steps of
the new process while saving time in others.

One of the main design principles of Franklin, hiding the
implementation details from the end users, was only
partly achieved in the first prototype. For example,
subfragments are sometimes displayed in the user
interface with their internal fragment identifier, see
Figure 6. Future versions of Franklin will better hide
these details from a content editor.

Franklin, of course, is not suited for all web sites. It
requires considerable server-side resources. In
addition, the information modeling and definition of
document types takes skill and time. Simple sites would
not benefit from this approach. Franklin is best suited
for large, frequently updated, structured content
collections with a high degree of repetition, frequent
redesigns, and multiple output formats.

 15

Conclusion

With Franklin, ibm.com has established a sound
foundation for an XML-driven content sharing model in
which content and design standards are easier to
deploy, manage, and update across all of IBM’s country
portals. Many similar efforts of business process re-
engineering of content management have failed due to
insufficient regard for the context, habits, and the goals
of the end users [4]. While the Franklin system still has
short-comings, the early inclusion of end users helped
design the prototype to better support their tasks and
improved acceptance. As Franklin evolves into the next
phase, new goals have emerged. New system features
and evolving industry standards will be considered for
inclusion. In addition, with concepts from Franklin
influencing future IBM offerings, the installed user base
may soon be able to migrate to a fully-supported
content management system.

Acknowledgements

We would like to thank the many participants that
made Franklin and the Portal Customization
deployment a success: members of the Internet
Technology team past and present for helping create
Franklin, the great group of technologists, designers
and administrators at ibm.com for changing the way
they work and supporting this new technology, and
finally, the 93 content editors for using this prototype in
their production environment and providing valuable
feedback.

References
[1] Apache XML parser, Xerces

http://xml.apache.org/xerces2-j/index.html

[2] Apache XSL processor, Xalan
http://xml.apache.org/xalan-j/index.html

[3] Challenger, J., Dantzig, P., and Iyengar, A. “A Scalable
and Highly Available System for Serving Dynamic Data
at Frequently Accessed Web Sites” In Proceedings of
ACM/IEEE SC98, November 1998.

[4] Cooper Interaction Design, November 2001 Newsletter
http://www.cooper.com/newsletters/2001_11/whole_lo
tta_thwarting_going_on.htm

[5] Haimes, R. Managing Workflow and Content for Agile
Publishing, Color Publishing, pp 24-33,
January/February 1994.

[6] IBM country portals,
http://www.ibm.com/planetwide/select/

[7] IBM Sweden country portal, http://www.ibm.com/se

[8] Iyengar, A., Challenger, J., Dias, D., and Dantzig, P.
“Techniques for Designing High-Performance Web
Sites,” Submitted to IEEE Journal of Internet
Computing, October, 1998.

[9] World Wide Web Consortium, Extensible Markup
Language (XML), http://www.w3.org/XML/

[10] World Wide Web Consortium, Extensible Style Sheet
Language (XSL), http://www.w3.org/Style/XSL/

[11] World Wide Web Consortium, XML Schemas and
Document Type Definitions (DTD),
http://www.w3.org/XML/Schema

[12] World Wide Web Consortium, Hypertext Transfer
Protocol (HTTP), http://www.w3.org/Protocols/

[13] Web-based Distributed Authoring and Versioning,
(WebDav), http://www.webdav.org/

[14] Weitzman, L. The Architecture of Information:
Interpretation and presentation of information in
dynamic environments. PhD Thesis, MIT Media Lab,
February 1995.
http://www.des1gn.com/papers/thesis.pdf

	Abstract
	Keywords
	Industry/category
	Project statement
	Project participants
	Project dates and duration
	Design and development process
	Solution details
	Benefits of Franklin
	Post-launch results
	Conclusion
	Acknowledgements
	References
	References

