
Tool Support for Object-Oriented
Cooperative Design:

Gesture Based Modeling on an
Electronic Whiteboard

COT/2-45-V1.0

C

O T

*

Centre for Object Technology

Centre for
Object Technology

The Centre for Object Technology (COT) is a
three year project concerned with research,
application and implementation of object
technology in Danish companies. The project is
financially supported by The Danish National
Centre for IT-Research (CIT) and the Danish
Ministry of Industry.

Participants are:
Maersk Line, Maersk Training Centre, Bang &
Olufsen, WM-data, Rambøll, Danfoss, Systematic
Software Engineering, Odense Steel Shipyard, A.P.
Møller, University of Aarhus, Odense University,
University of Copenhagen, Danish Technological
Institute and Danish Maritime Institute

Revision history: 25/4 2000 Final Version

Author(s): Christian Heide Damm, Klaus Marius Hansen, Michael Thomsen

Status: Final

Publication: Public

Summary:

© Copyright 2000 Christian Heide Damm, Klaus Marius Hansen, Michael Thomsen

Modeling is important in object-oriented software development.
Although a number of Computer Aided Software Engineering
(CASE) tools are available, and even though some are technically
advanced, few developers use them. This paper describes our
attempt to examine the requirements needed to provide tool support
for the development process, and describes and evaluates a tool,
Knight, which has been developed based on these requirements.
The tool is based on a direct, whiteboard-like interaction achieved
using gesture input on a large electronic whiteboard. So far the
evaluations have been
successful and the tool shows the potential of greatly enhancing
current support for object-oriented modeling.

This paper also appears in:
Proceedings of CHI'2000, April 1-6, The Hague, The Netherlands.

Tool Support for Cooperative Object-Oriented Design:
Gesture Based Modeling on an Electronic Whiteboard

&KULVWLDQ�+HLGH�'DPP��.ODXV�0DULXV�+DQVHQ��0LFKDHO�7KRPVHQ
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Aarhus N, Denmark
{damm, marius, miksen}@daimi.au.dk

ABSTRACT
Modeling is important in object-oriented software develop-
ment. Although a number of Computer Aided Software
Engineering (CASE) tools are available, and even though
some are technically advanced, few developers use them.
This paper describes our attempt to examine the
requirements needed to provide tool support for the
development process, and describes and evaluates a tool,
Knight, which has been developed based on these
requirements. The tool is based on a direct, whiteboard-like
interaction achieved using gesture input on a large
electronic whiteboard. So far the evaluations have been
successful and the tool shows the potential of greatly
enhancing current support for object-oriented modeling.

KEYWORDS
Gesture input, electronic whiteboards, cooperative design,
object-oriented modeling, user study, CASE tools.

INTRODUCTION
Software developers use models to develop object-oriented
software. In the early stages of a software development
project, developers focus on understanding the part of the
world that the computer system should support. Throug-
hout the project, they represent their understanding in the
form of models. The models are not only used in order to
understand and discuss the world, but are also implemented
in code and thus form an important part of the final
software system.

A variety of Computer Aided Software Engineering
(CASE) tools have been created to support the developers’
work throughout the development process [12]. However,
in practice these tools are supplemented with whiteboards,
especially in creative phases of development.

The most appealing aspects of whiteboards are their ease of
use and their flexibility. Whiteboards require no special
skills, they do not hamper the creativity of the user, and
they can be used for a variety of tasks. Their many

advantages aside, for most development projects white-
boards are not enough. Capturing diagrams electronically
with CASE tools facilitates code generation, documen-
tation, and allows developers much more flexibility in
editing and changing the diagrams. The conflicting advan-
tages and disadvantages of whiteboards and CASE tools
can lead to frustrating and time consuming switches
between the two technologies. Our goal is to design a tool
that offers the best of both worlds.

Paper Structure
The next section presents the motivation for our design. We
then discuss two user studies from which we derive a set of
design implications. We describe the Knight tool we
developed based on these observations, and present an
evaluation of the tool. Finally, we discuss directions for
future research and draw our conclusions.

BACKGROUND
Use of whiteboards has been studied in various contexts
including meeting rooms [9][15], classrooms [1], and
personal offices [17]. Whiteboards are very simple to use
and many activities are ideally suited for this simple inter-
action. Computational augmentation [24] can potentially
solve problems with whiteboards such as lack of space and
efficient editing facilities. We are concerned with the use of
whiteboards in a specific work practice, cooperative object-
oriented modeling, and the potential use of augmentation
in that setting.

CASE tools seek to support software development
techniques such as diagramming, code generation, and
documentation. Nevertheless, adoption of CASE tools in
organizations is slow and partial [5][8]. A main reason is
that current CASE tools are targeted at technically-oriented
methods rather than user-oriented processes. In particular,
CASE tools are weak in supporting creativity, idea
generation, and problem solving [7].

The 7LYROL system [20][16] inspired us and was a starting
point for our work. It is designed to support small, informal
meetings on an electronic whiteboard. The similarity of
user interaction to that on ordinary whiteboards is stressed.
In order to be able to support specific meeting practices,
Tivoli introduced domain objects that allow customizations
of the tool to support, e.g., brainstorming sessions and
decision-making meetings. We focus on the creation and

manipulation of a certain kind of domain objects and the
integration of these into a computational environment.

OBSERVING DESIGN IN PRACTICE
We conducted two field studies of software developers
using CASE tools and whiteboards in order to understand
the current practice of object-oriented modeling. In both
studies, we observed a group of developers with mixed
competencies and then interviewed them. The developers
used the Unified Modeling Language (UML [22]), which is
a formal graphical notation containing several different
diagram types. We concentrate on UML class diagrams,
which are used to model central concepts and relationships
found in the real world (or an imagined world).

Each study focused on three aspects of the design activity:
FRRSHUDWLRQ�� DFWLRQ�� and� XVH�� � &RRSHUDWLRQ includes the
communicative, coordinative, and collaborative aspects of
design. $FWLRQ�and XVH are akin to the categories Bly et al.
used in their observations of shared drawings [3]. $FWLRQ
involves the physical interaction of the designers with
tools. 8VH involves the semantics of the result of actions.

User Study 1: Building a New System
5HVHDUFK�VHWWLQJ� COT [29] is a technology transfer project
between Danish universities and private companies. As
part of COT, a university research group and developers
from a private company cooperatively designed an object-
oriented control system for a flow meter.

3DUWLFLSDQWV� The developers from the private company had
no previous knowledge of object-oriented development,
whereas the university research group consisted of
experienced object-oriented developers. The developers
from the private company acted as domain experts in initial
phases of development, while the university researchers
were object-oriented software designers and, to some
extent, mentors for the developers from the private
company. During the two-week period in which the project
was studied, the number of people attending design
meetings varied. Typical sessions involved 2-4 developers
from the private company and 2-4 university people.

3URFHGXUH� The sessions took place in meeting rooms
equipped with multiple ordinary whiteboards, an overhead
projector, and a computer. We observed three sessions in
detail. In each of these an observer took notes.

Observation 1: Alternating Between Tools
7RP��0LNH�DQG�3HWHU��DUH�DERXW� WR�GLVFXVV�D�QHZ�DUHD�RI
WKH�SUREOHP�GRPDLQ��7R�EUDLQVWRUP�DQ�LQLWLDO�GHVLJQ��7RP
DQG�0LNH�GUDZ�LQLWLDO�PRGHOV�RQ�D�ZKLWHERDUG��-XVW�EHIRUH
OXQFK�WKH\�UXQ�RXW�RI�ZKLWHERDUG�VSDFH�DQG�3HWHU�FDSWXUHV
WKH�ZRUN� VR� IDU� XVLQJ� D� GLJLWDO� FDPHUD�� $IWHU� OXQFK� 7RP
DQG� 0LNH� FRQWLQXH� RQ� D� IUHVKO\�ZLSHG� ZKLWHERDUG�� ZKLOH

1 The names of participating designers have been changed

throughout this paper.

3HWHU�UHGUDZV�WKH�GLDJUDPV�IURP�EHIRUH� OXQFK� LQ�D�&$6(
WRRO�XVLQJ�WKH�SKRWRV�DV�D�UHIHUHQFH�

Developers alternated between whiteboards and CASE
tools. A typical work sequence involved sketching a model
and then transferring it to a CASE tool, which could then
use the formal model to generate code.

7KH� QH[W� PRUQLQJ��0LNH� XVHV� WKH� &$6(� WRRO� WR� JHQHUDWH
GLDJUDPV� IURP� H[LVWLQJ� FRGH�� 7KHVH� LOOXVWUDWH� GHWDLOV� KH
DQG�7RP�GLVFXVVHG�WKH�SUHYLRXV�GD\��0LNH�SODFHV�SULQWRXWV
RI� WKH�GLDJUDPV�RQ�WKH�RYHUKHDG�SURMHFWRU��)LJXUH����DQG
7RP�XVHV�ZKLWHERDUG�PDUNHUV�WR�PDNH�DPHQGPHQWV�

Work on an area of the problem domain involved several
cycles of drawing and redrawing both on whiteboards and
in CASE tools.

Figure 1. Using transparencies on a whiteboard

Observation 2: Working with a Formal Notation
7RP�H[SODLQV�KRZ�D�IORZ�PHWHU�ZRUNV�FRQFHSWXDOO\��$V�KH
H[SODLQV�� KH� WULHV� WR� PRGHO� WKLV� XVLQJ� D� 80/� GLDJUDP
FRQWDLQLQJ� FODVVHV� DQG� UHODWLRQVKLSV�� +H� VWRSV� VHYHUDO
WLPHV� LQ� RUGHU� WR� DVN�0LNH� DQG� 3HWHU� KRZ� WR� GUDZ�80/
HOHPHQWV�FRUUHFWO\��0RUHRYHU��WR�XQGHUVWDQG�WKH�VHPDQWLFV
RI�WKH�GUDZLQJV��0LNH�DQG�3HWHU�RIWHQ�LQWHUUXSW�7RP�

The formal UML notation was hard to learn for the in-
experienced developers. These syntactic problems caused a
number of interruptions and breakdowns during modeling.

3HWHU� DQG� 7RP� DUH� PRGHOLQJ� KRZ� D� QXPEHU� RI� REMHFWV
LQWHUDFW�ZLWK�HDFK�RWKHU� LQ� WKH�V\VWHP��7KH\�ZDQW� WR� VKRZ
KRZ� WKHVH� DUH� V\QFKURQL]HG�� +RZHYHU�� WKH� 80/� LV� LQ�
FDSDEOH�RI�GHVFULELQJ� WKHVH�DVSHFWV��0LNH� VXJJHVWV�D� QHZ
QRWDWLRQDO�HOHPHQW�IRU�WKLV��3HWHU�DQG�7RP�SLFN�WKLV�XS�DQG
XVH�LW�LQ�VXEVHTXHQW�GHVLJQ�SUREOHPV�

The semantics of the notation was extended in order to
make it support the work process and to add expressive

power. In this way, the developers effectively extended the
UML notation on the fly.

Observation 3: Combining Informal and Formal Drawings
7RP�VNHWFKHV� WKH�SK\VLFDO�DSSHDUDQFH�RI�D� IORZ�PHWHU�RQ
WKH� ZKLWHERDUG�� +H� XVHV� WKLV� GUDZLQJ� ZKLOH� H[SODLQLQJ� D
GLDJUDP�RI� WKH� IORZ�PHWHU¶V� HOHFWULFDO� FLUFXLWV��)ROORZLQJ
WKLV��0DUN�PRGHOV�WKH�LQWHUIDFH�WR�WKH�FLUFXLWV��+H�FRQQHFWV
WKH�HOHPHQWV�WR�7RP¶V�VNHWFKHV�

The domain experts used illustrations, in connection with
diagram elements, to explain important problem domain
concepts. New ideas were often sketched informally, just
before the introduction of UML notation.

3HWHU� SKRWRJUDSKV� WKH� VNHWFKHV� RI� WKH� FLUFXLWV� DQG� IORZ
PHWHU�EHIRUH�KH�FRQWLQXHV�WR�HODERUDWH�RQ�0DUN¶V�GLDJUDP�
/DWHU��KH�UHDOL]HV�WKDW�KH�QHHGV�WKH�VNHWFKHV�DV�D�UHPLQGHU�
+H� FRQVXOWV� WKH� GLJLWDO� SKRWR� DQG� UHGUDZV� D� SDUW� RI� WKH
FLUFXLWV�EHIRUH�KH�FRQWLQXHV�PRGHOLQJ�

The informal drawings were temporary and were usually
erased after the corresponding formal diagram was drawn.
Central drawings were, however, redrawn on paper or
photographed to make them persistent.

User Study 2: Restructuring an Existing System
5HVHDUFK� VHWWLQJV� Mjølner Informatics [30] is a small
company that makes compilers and other software
development tools for the object-oriented language BETA

[13]. A design meeting was held to design a new tool that
integrated several separately-developed tools.

3DUWLFLSDQWV� Six developers attended the meeting. They
had varying experience in object-orientation and varying
knowledge of the separate tools. Four of the developers had
been previously responsible for a separate tool each. The
last two developers had limited knowledge of the tools.

3URFHGXUH� We videotaped the ongoing discussion. In
addition, we took notes with special emphasis on what was
drawn on the blackboard.

Observation 1: Filtering of UML Drawings
-RKQ� DQG�0LFKDHO� KDYH� HDFK� GUDZQ� D� PRGHO� RI� WKH� WRRO
WKH\�KDYH�GHYHORSHG��7KH\�QRZ� IRFXV�RQ�KRZ� WR� LQWHJUDWH
WKH�WZR�WRROV��0LFKDHO�HUDVHV�WKH�SDUWV�RI�WKH�WRROV�WKDW�DUH
LUUHOHYDQW� IRU� WKH� LQWHJUDWLRQ�� +H� JURXSV� VHYHUDO
DVVRFLDWLRQV�LQWR�RQH�LQ�RUGHU�WR�VKRZ�D�UHODWLRQVKLS�HYHQ
WKRXJK�KH�KDV�HUDVHG�WKH�LQWHUPHGLDWH�FODVVHV�

Often, the developers filtered information to handle large
models (Figure 2). The developers idealized the model
when it improved the understandability, reduced the
interfaces of classes whenever full classes were too detailed,
and kept transitive relations between classes to a minimum.

Observation 2: Editing Diagrams
(ULF� GUDZV� D� PRGHO� RI� D� WRRO�� 7R� H[SODLQ� WKLV�� KH� DGGV
GHWDLOV�WR�WKH�FODVVHV�-RKQ�DQG�0LFKDHO�KDYH�GUDZQ��$IWHU
D�ZKLOH� WKLV�FOXWWHUV� WKH�GLDJUDP��(ULF� HUDVHV� VRPH�RI� WKH

H[WHQGHG�FODVVHV�DQG�UHGUDZV�WKHP�IXUWKHU�DSDUW��)RU�PRVW
RI�WKH�³PRYHG´�FODVVHV�KH�RQO\�UHGUDZV�WKH�ER[�DQG�QDPH�

Participants frequently changed the diagrams. Such
changes were time-consuming and annoyed the developers.

Figure 2. Blackboard snapshot

Observation 3: Drawing Informal and Incomplete elements
-RKQ�DQG�(ULF� DUH�PRGHOLQJ� D� SDUW� RI� WKH� LQWHJUDWLRQ�� ,Q
RUGHU�WR�VKRZ�WKH�ODFN�RI�NQRZOHGJH�RI�WKLV�DUHD��WKH\�RQO\
GUDZ� D� SDUWLDO� GLDJUDP�� 6HYHUDO� WLPHV� WKH\� GUDZ
UHODWLRQVKLSV�WKDW�DUH�RQO\�FRQQHFWHG�WR�RQH�FODVV�

Approximately 25% of the meeting was spent on actual
drawing on the blackboard. Of this, about 80% was spent
drawing formal UML diagrams, and the remaining 20% on
informal and incomplete drawings (or about 5% of the total
meeting time). UML elements were drawn in incomplete
variants, such as classes without names, incomplete inheri-
tance trees, or associations connected to only one class.

Observation 4: Cooperation Between Developers
-RKQ� VWDUWV� WR�GUDZ�D�PRGHO�RI�D� WRRO�RQ� WKH� EODFNERDUG�
7KH� RWKHU� GHYHORSHUV� VLW� DW� D� WDEOH� DQG� DVN� TXHVWLRQV�
)ROORZLQJ� WKLV�� (ULF� VWDUWV� WR� GUDZ� WKH� WRRO� WKDW� KH� KDV
GHYHORSHG�� 6RRQ� KH� GLVFRYHUV� UHODWLRQV� EHWZHHQ� WKH� WZR
WRROV� DQG� DVNV� -RKQ� WR� HODERUDWH� RQ� KLV� GUDZLQJ�� $IWHU
-RKQ�ILQLVKHV��(ULF�FRQWLQXHV�RQ�KLV�GUDZLQJ�

Figure 3. Turn-taking at the blackboard

The developers frequently cooperated by taking turns at the
blackboard. Figure 3 shows two developers standing at the
blackboard, taking turns adding, deleting or changing the
model. Abrupt interruptions were rare and only one
developer drew on the model at any time. However, other
discussion often took place while another person was
drawing.

Design Implications
The two user studies highlighted the effectiveness of
ordinary whiteboards as tools for cooperative design. They
support a direct interaction that is easy to understand, and
they never force the developer to focus on the interaction
itself. Whiteboards allow several developers to work simul-
taneously and thus facilitate cooperation. They do not
require a special notation and thus support both formal and
informal drawings. Notational conventions can easily be
changed and extended.

Whiteboards, however, miss several desirable features of
CASE tools. Without the computational power of CASE
tools, making changes to the drawings is laborious, the
fixed space provided by the board is too limited, and there
is no distinction between formal and informal elements.
There is also no support for saving and loading drawings.

These observations led to the following design criteria for a
tool to support object-oriented modeling:

• 3URYLGH�D�GLUHFW�DQG�IOXLG�LQWHUDFWLRQ� A low threshold
of initial use is needed and the tool should never force
the developer to focus on the interaction itself. The
whiteboard style of interaction is ideally suited for this.

• 6XSSRUW�FRRSHUDWLYH�ZRUN. Several developers must be
able to work with the tool cooperatively. Informal
cooperative work with domain experts as well as
software developers must be supported.

• ,QWHJUDWH� IRUPDO�� LQIRUPDO�� DQG� LQFRPSOHWH� HOHPHQWV�
Besides support for formal UML elements, there must
be support for incomplete UML elements and informal
freehand elements. Also, the support for formal UML
elements must be extensible, to allow for the
introduction of new formal elements.

• ,QWHJUDWH� ZLWK� GHYHORSPHQW� HQYLURQPHQW. Integration
with traditional CASE and other tools is needed.
Diagrams must be saved and restored, and code must
be generated and reverse engineered.

• 6XSSRUW�ODUJH�PRGHOV� A large workspace is needed. In
addition, there must be support for filtering out
information that is not needed at a given time.

DESIGN OF THE KNIGHT TOOL
Based on the user studies, we have designed and imple-
mented the�.QLJKW�tool. The Knight tool uses an electronic
whiteboard, currently a SMART Board [26], as its input
medium. The SMART Board is a 72-inch touch-sensitive
computer screen mounted in a cabinet to resemble a

traditional whiteboard. Users can draw on the surface using
a number of pens (or just using their fingers). In contrast to
other electronic whiteboards, such as, e.g., the Xerox
Liveboard [20], the SMART Board unfortunately only
allows input from one pen at a time.

The prototype is implemented in Tcl/Tk [19] with the [incr
Tcl] extension [14], runs on the Windows and Unix
platforms and is available for download from the Knight
homepage [25]. We kept the interface very simple (Figure
4). A large workspace, resembling an ordinary whiteboard,
is the central part of the user interface. The interaction is
based on pen-strokes made directly on the workspace.

Figure 4. Knight user interface

Formality, Informality, and Directness
We wanted the tool to support a continuum of drawing
formality, ranging from informal sketching elements over
incomplete UML elements to formal UML elements. To
allow this, the tool currently operates in one of two modes:
Freehand mode or UML mode. We recognize that the use
of modes is potentially problematic. However, our studies
indicate that users already naturally operate in these two
different modes, in different phases of the design. Freehand
mode supports idea generation and UML mode supports
design formulation. Two different background colors
indicate the different modes.

In freehand mode, the pen strokes are not interpreted.
Instead, they are simply transferred directly to the drawing
surface. This allows the users to make arbitrary sketches
and annotations just as on an ordinary whiteboard. Unlike
on whiteboards, these can be moved around or hidden.
Each freehand session creates a connected drawing element
that can be manipulated as a single whole.

In UML mode, pen strokes are interpreted as gestural
commands that create UML elements. If, e.g., a user draws
a box, the tool will immediately interpret this as the gesture
for a UML class and replace the pen stroke by a UML class
symbol (Figure 5).

Figure 5. Recognition of the gesture for a UML class

Before
recognition

After
recognition

The diagrams need not adhere to the UML semantics
completely, in that incomplete diagram elements are
allowed. Figure 6 shows how the user can input a
relationship between two classes with only one of the two
classes specified. The relationship can later be fully
specified.

Figure 6. A relationship with only one class specified

The gestures for creating UML elements have been chosen
so as to resemble what developers draw on ordinary
whiteboards. This makes the gestures direct and easy to
learn.

Another set of short directional gesture strokes chooses
operations from a number of marking menus [10]
illustrated in Figure 7.

Figure 7. Context-dependent pie menus

For example, in order to undo or redo, the user may either
make a short left or right stroke, or press and hold the pen
and choose the corresponding field in a popup pie menu.
The marking menus are also used to switch between UML
and freehand mode. Marking menus support the interaction
on a large surface well, because they are always ready at
hand, unlike usual buttons and menus [20]. Apart from
supporting a transition from initial to expert use, the
marking menus also conveniently provide an alternative
way of creating certain diagram elements (Figure 7 right).
The marking menus are context-dependent. Depending on
the immediate context in which a stroke or press was made,
it will be determined whether it should be interpreted as a
gesture command or as a marking menu shortcut. In the
latter case a context-specific menu will be shown.

Use of Gestures
We use Rubine’s algorithm [21] to recognize the gestures.
This algorithm has the advantage of being relatively easy to
train: To add a new gesture command, one simply draws a
number of gesture examples. Potential problems with the
algorithm, and gesture recognition in general, include that
only a limited number of gestures can be recognized and
that no feedback is given while gestures are drawn. To
address these problems, we use FRPSRXQG� JHVWXUHV [11]
and HDJHU�UHFRJQLWLRQ�[21], respectively.

Compound gestures combine gestures that are either close
in time or space to a diagram element. For example, a user
can change an association relationship (represented by an
undecorated line) to a unidirectional association
(represented by a line with an arrowhead) by drawing an
arrowhead at the appropriate end. In this way, users can
gradually build up a diagram, refining it step-by-step.

With eager recognition, the tool continuously tries to
classify gestures as they are being drawn. Whenever the
gesture can be classified with a high confidence, feedback
is given to show that the gesture was recognized, and the
rest of the gesture is used as parameters to the recognized
gesture’s command. For example, when a move gesture is
recognized, the elements located at the starting point of the
gesture will follow the pen while it is pressed down.

Support for Large Models
The workspace is potentially infinite, allowing users to
draw very large models. It also supports zooming, as in
zoomable interfaces [2]. In order to provide overview and
context awareness, one or more floating “radar” windows
can be opened (Figure 8; see also Figure 4 upper right).

Figure 8. Radar windows provide context awareness

These radar windows show the whole drawing workspace,
with a small rectangle indicating the part currently visible.
Clicking and dragging the rectangle pans while dragging
the handles of the rectangle zooms. By opening more radar
windows, multiple users can have convenient access to pan
and zoom, even though the physical drawing space is large.

Filtering is in a preliminary stage. Currently, it is possible
to suppress details of the formal UML model and toggle the
visibility of informal elements.

Tool Integration
The Knight tool must be integrated with existing CASE
tools, to facilitate code generation from the models.
Although the Knight tool is currently only able to exchange
data with the WithClass CASE tool [27], we are currently
working on making it a plug-in front-end to a variety of
tools. In this way it is possible to use the CASE tool
capabilities to create or edit models outside a cooperative
modeling situation.

EVALUATION OF THE KNIGHT TOOL
We evaluated the current design of the Knight tool in two
sessions. Both sessions were actual design sessions in
which Knight was the primary tool. The purpose was to
evaluate the usability of the tool in a realistic work setting.

Before
recognition

After
recognition

First, a facilitator introduced the Knight tool to the
participating designers and taught them the basic use of the
tool. During the evaluation, he also helped if the designers
had problems and asked for help.

We videotaped the sessions and took notes. As in our user
studies, we focused on three aspects of design: cooperation,
action, and use. Following the design sessions, we
conducted qualitative interviews.

Both sessions were encouraging. Each lasted approximately
one and a half hours, and the participants were able to
maintain focus on their job, rather than on the tool or the
evaluation.

Next we discuss the results of the evaluations with respect
to the design criteria identified and summarized in “Design
Implications” above.

Evaluation 1: Designing a New System Using Knight
5HVHDUFK� VHWWLQJ� The CPN2000 project [6][31] is
concerned with developing and experimenting with new
interaction techniques for a Petri Net editor with a complex
graphical user interface. The original user interface is a
traditional window-icon-menu-pointer interface, whereas
the new interface will use interaction styles such as tool-
glasses, marking menus, and gestures. As part of the
design, three object-oriented models for the handling of
events and for the implementation of certain interface
elements had been constructed. We observed the meeting in
which these three models were integrated into one model
using the Knight tool.

3DUWLFLSDQWV� Three designers participated in the meeting.
One of these had modeled the event handling and was
knowledgeable of UML and traditional CASE tools. The
other two modeled the interaction styles and had little
knowledge of UML.

Results
The resulting diagram is shown in Figure 9. This rather
large model was constructed with few problems and
mishaps.

3URYLVLRQ�IRU�D�GLUHFW�DQG�IOXLG�LQWHUDFWLRQ. After the short
introduction, the participants were able to use the tool for
long periods without help: the tool had a low threshold for
initial use.

The use of gestures was mostly unproblematic. However,
some participants had trouble drawing certain gestures.
This may be due in part to too little training, but the
gesture set can also be improved. For example, people draw
differently with respect to size, orientation, and speed, and
the gesture examples used to train the recognizer must
encompass such variations.

6XSSRUW� IRU� FRRSHUDWLYH� ZRUN. The electronic whiteboard
worked well as a center of cooperation. The only problem
participants reported was that only one person could draw

Figure 9. Diagram produced in the first session
(with a blow-up of the upper right part)

at a time. Nevertheless, each developer was able to hold his
or her own pen, and they all coordinated their actions when
necessary.

,QWHJUDWLRQ� RI� IRUPDO�� LQIRUPDO� DQG� LQFRPSOHWH� HOHPHQWV.
Freehand drawings were widely used and appreciated. The
low resolution of the actual electronic whiteboard meant
that the freehand drawings were relatively coarse-grained.
In addition, response from the electronic whiteboards was
delayed when a user drew quickly. This meant that
freehand text was hard to do both legibly and quickly.

6XSSRUW� IRU� ODUJH�PRGHOV. As the size of the model grew,
the radar window was used to pan and zoom efficiently.
However, the fact that the radar window was the only way
to move around the workspace was problematic. In order to
move a class from one corner of the large diagram to
another, one participant had to move, pan, and then move
again. This suggests the need for some other means of
scrolling.

Evaluation 2: Restructuring a System Using Knight
5HVHDUFK�VHWWLQJ� The DESARTE project [32] is concerned
with designing an electronic support environment for
architects. As part of this environment, a 3D replacement
of the workstation desktop is implemented. A conceptual
model had previously been designed and was to be
restructured during this meeting using the Knight tool.

3DUWLFLSDQWV� Two designers attended the meeting: The
designer responsible for implementing the 3D desktop and
a user involvement expert with an understanding of
architectural work practice. Both had a good knowledge of
object-oriented modeling.

Results
The second session showed a few more breakdowns and
problems than evaluation 1. The developers were never-
theless able to complete the session and their work.

3URYLVLRQ� IRU�D�GLUHFW�DQG� IOXLG� LQWHUDFWLRQ. After a short
time, the participants were able to use the tool without
many problems. When an error did occur, such as the
system interpreting a gesture differently than expected, the
participants sometimes got confused about what was
happening: The feedback of the tool was not sufficient in
the event of misinterpretations.

One of the participants initially had many problems
operating the marking menu: Often he invoked commands
by accident when drawing. This was partly due the fact
that he had no previous knowledge of gestural input and
marking menus.

6XSSRUW�IRU�FRRSHUDWLYH�ZRUN. The two participants had no
trouble cooperating around the tool.

,QWHJUDWLRQ�RI� IRUPDO�� LQIRUPDO�� DQG� LQFRPSOHWH� HOHPHQWV.
The participants often made freehand drawings to illustrate
the user interface of the designed environment. A minor
problem in this case, was that that informal and formal
elements could only be rudimentary connected, and there
was little support for advanced grouping. Incomplete UML
elements were considered useful, but were not widely used.

6XSSRUW�IRU�ODUJH�PRGHOV. In this evaluation, the focus was
on restructuring an existing diagram of moderate size, and
the radar window was mostly used for zooming.

DESIGN IMPLICATIONS & FUTURE WORK
The observations and subsequent interviews showed that
the Knight tool is a valuable tool for modeling in practice.
However, as the above results point out, improvements are
needed.

A number of physical problems with the actual electronic
whiteboard hindered cooperation. Only one person at a
time could draw on the whiteboard and informal drawing
was only slowly rendered. The latter problem may be
handled in part by the Knight tool, whereas the former is
intrinsic to the specific electronic whiteboard. However, the
lack of support for synchronous drawings was not
construed as a major problem in the two evaluations. Since
design processes are becoming increasingly distributed, we
are currently investigating distributed cooperative design
using the Knight tool. Integration with a mediaspace [4]
may provide a non-intrusive way of supporting distributed
communication in relation to this.

Problems with gestures caused a number of breakdowns.
Several possibilities exist for alleviating this. First, more
appropriate feedback can be given when a gesture has been
drawn. Second, personalized gestures may be necessary,
e.g., in the form of a SHUVRQDO�SHQ, as in Tivoli [20]��For

each personal pen there could be a separate gesture set, a
separate mode, separate colors, or other personal settings.

The integration of formal, informal, and incomplete
elements is not complete. It is not, e.g., possible to connect
formal and informal elements. A dynamic extension of the
formal notation is a step towards this integration. The
environment, with gesture recognition based on examples
and an interpreted programming environment, makes such
extensions technically feasible.)ODWODQG [18] defines non-
overlapping VHJPHQWV with different behaviors. Such
segments may be used to group formal and informal
elements separately. A notion of overlapping groups may
be used to link these different segments.

Many of our observations of object-oriented modeling seem
to be true for other types of formal modeling such as task
modeling. A natural step would be to implement support
for these as well, especially if combined with the idea of
overlapping groups. This would facilitate combination of
informal elements with formal elements, as well as
handling types of formal elements together.

Filtering should also be considered in depth. Especially in
evaluation 1, after the diagram had reached a certain size,
navigation in the workspace became time-consuming. It
should be possible to selectively hide parts of a model and
give drawing elements temporality so elements may exist
only for a certain period of time.

An important future area of research is the use of the
Knight tool as a plug-in interface for different tools, which
we are currently working on. This will involve longitudinal
studies of the use of the Knight tool in development
projects.

CONCLUSION
We have developed a tool for object-oriented development:
Knight. The design of the tool is based on user studies of
software developers creating object-oriented models. These
show that important design criteria for a usable tool are (1)
a direct and fluid interaction, (2) support for collaborative
work, (3) an integration of both formal and informal
drawing elements, (4) support for modeling in the large
and (5) integration with existing development tools.

The Knight tool was designed to meet these criteria by
using a large electronic whiteboard as input medium and by
using an interaction style similar to that of traditional
whiteboards. Input is done using gestures that resemble
what is drawn on whiteboards. Both formal and more
informal elements are supported and several developers can
easily cooperate at the electronic whiteboard. Knight thus
maintains the advantages of whiteboards and additionally
adds features only possible in a computer based tool:
Models can be easily modified, diagrams can be exported
and imported to and from CASE tools, elements can be
hidden and later restored, and a much larger workspace is
provided.

ACKNOWLEDGEMENTS
We thank Michael Tyrsted who participates in the Knight
project. We also thank Wendy Mackay for many discus-
sions and for critique and help in writing this paper.
Furthermore, we thank Michel Beaudouin-Lafon as well as
the people from Danfoss Instruments, Mjølner Informatics,
the DESARTE project, and the CPN/2000 project.

The Knight Project is carried out in the Centre for Object
Technology that has been partially funded by the Danish
National Centre for IT Research [28].

REFERENCES
1. Abowd, G., Atkeson, C., Feinstein, A., Hmelo, C.,

Kooper, R., Long, S., Sawhney, N., Tani, M.: Teaching
and Learning as Multimedia: The Classroom 2000
Project. 3URFHHGLQJV�RI�0XOWLPHGLD¶����1996, 187-198.

2. Bederson, B.B., Hollan, J.D. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics. 3URFHHGLQJV�RI�8,67, 1994, 17-26.

3. Bly, S.A, Minneman, S.L. Commune: A Shared
Drawing Surface.� 3URFHHGLQJV� RI� WKH� &RQIHUHQFH� RQ
2IILFH�,QIRUPDWLRQ�6\VWHPV��1990, 184-192

4. Bly, S.A., Harrison, S.R., Irwin, S. Mediaspaces:
Bringing people together in a video, audio and
computing environment. &RPPXQLFDWLRQV�RI� WKH�$&0,
36(1), January 1993.

5. Iivari, J. Why Are CASE Tools Not Used? In
&RPPXQLFDWLRQV�RI�WKH�$&0, 39 (10), 1996.

6. Janecek, P., Ratzer, A.V., Mackay, W.E. Redesigning
Design/CPN: Integrating Interaction and Petri Nets in
Use. 3URFHHGLQJV�RI�WKH�6HFRQG�:RUNVKRS�RQ�3UDFWLFDO
8VH� RI� &RORXUHG� 3HWUL� 1HWV� DQG� 'HVLJQ�&31�� 1990,
119-133.

7. Jarzabek, S., and Huang, R. The Case for User-Centered
CASE Tools. &RPPXQLFDWLRQV� RI� WKH� $&0, 41 (8),
1998.

8. Kemerer, C.F. Now the learning curve affects CASE
tool adoption. In ,(((�6RIWZDUH� 9 (3), 1992.

9. Kraut, R., Fish, R., Root, R., Chalfonte, B. Informal
Communication in Organizations: Form, Function and
Technology. *URXSZDUH� DQG� &RPSXWHU�6XSSRUWHG
&RRSHUDWLYH�:RUN��1993, 287-314.

10. Kurtenbach, G. 7KH�'HVLJQ�DQG�(YDOXDWLRQ�RI�0DUNLQJ
0HQXV. Ph.D. Thesis, University of Toronto, 1993.

11. Landay, J.A., and Myers, B.A. Interactive Sketching for
the Early Stages of User Interface Design. 3URFHHGLQJV
RI�&+,
��, 45-50.

12. Lyytinen, K., Tahvanainen; V.-P. 1H[W� *HQHUDWLRQ
&$6(�7RROV. IOS Press, 1992.

13. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.
2EMHFW�2ULHQWHG� 3URJUDPPLQJ� LQ� WKH� %(7$
3URJUDPPLQJ�/DQJXDJH� ACM Press, Addison Wesley,
1993.

14. McLennan, M.J. [incr Tcl]: Object-Oriented
Programming. In 3URFHHGLQJV�RI� WKH�7FO�7N�:RUNVKRS,
University of California at Berkeley, June 10-11, 1993.

15. Moran, T.P., Chiu, P., Harrison, S., Kurtenbach, G.,
Minneman, S., van Melle, W. Evolutionary
Engagement in an Ongoing Collaborative Work
Process: A Case Study. 3URFHHGLQJV�RI�&6&:¶����150-
159.

16. Moran, T.P., van Melle, W., and Chiu, P. Tailorable
Domain Objects as Meeting Tools for an Electronic
Whiteboard. 3URFHHGLQJV�RI�&6&:
��, 295-304.

17. Mynatt, E.D. The Writing on the Wall. 3URFHHGLQJV�RI
,17(5$&7¶����1999, 196-204.

18. Mynatt, E.D., Igarashi, T., Edwards, W.K., and
LaMarca, A. Flatland: New Dimensions in Office
Whiteboards. 3URFHHGLQJV�RI�&+,
��, 346-353.

19. Ousterhout, J.K. 7FO� DQG� WKH� 7N� 7RRONLW. Addison-
Wesley, 1994.

20. Pedersen, E.R., McCall, K., Moran, T.P., and Halasz,
F.G. Tivoli: An Electronic Whiteboard for Informal
Workgroup Meetings. INTERCHI
��, 391-398.

21. Rubine, D. Specifying gestures by example.
3URFHHGLQJV�RI�6,**5$3+
��, 329-337.

22. Rumbaugh, J., Jacobson, I., Booch, G. 7KH� 8QLILHG
0RGHOLQJ� /DQJXDJH� 5HIHUHQFH� 0DQXDO. Addison-
Wesley, 1999.

23. Russell, F. The case for CASE. 6RIWZDUH�(QJLQHHULQJ�
$� (XURSHDQ� 3HUVSHFWLYH�� Thayer, R., McGettrick, A.
(Eds.) IEEE Computer Society Press, 1993, 531-547.

24. Wellner, P., Mackay, W., Gold, R.: Guest Editors'
Introduction to the Special Issue on Computer-
Augmented Environments: Back to the Real World. In
&RPPXQLFDWLRQV�RI�WKH�$&0, 36(7), 1993.

ONLINE REFERENCES
25. http://www.daimi.au.dk/~knight

26. http://www.smarttech.com

27. http://www.microgold.com

28. http://www.cit.dk

29. http://www.cit.dk/COT

30. http://www.mjolner.com

31. http://www.daimi.au.dk/CPnets/CPN2000

32. http://desarte.tuwien.ac.at/

	Artikel final.pdf
	ABSTRACT
	KEYWORDS
	INTRODUCTION
	Paper Structure

	BACKGROUND
	OBSERVING DESIGN IN PRACTICE
	User Study 1: Building a New System
	Observation 1: Alternating Between Tools
	Observation 2: Working with a Formal Notation
	Observation 3: Combining Informal and Formal Drawings
	Tom sketches the physical appearance of a flow meter on the whiteboard. He uses this drawing while explaining a diagram of the flow meter’s electrical circuits. Following this, Mark models the interface to the circuits. He connects the elements to Tom’s

	User Study 2: Restructuring an Existing System
	Observation 1: Filtering of UML Drawings
	Observation 2: Editing Diagrams
	Observation 3: Drawing Informal and Incomplete elements
	Observation 4: Cooperation Between Developers

	Design Implications

	DESIGN OF THE KNIGHT TOOL
	Formality, Informality, and Directness
	Use of Gestures
	Support for Large Models
	Tool Integration

	EVALUATION OF THE KNIGHT TOOL
	Evaluation 1: Designing a New System Using Knight
	Results

	Evaluation 2: Restructuring a System Using Knight
	Results

	DESIGN IMPLICATIONS & FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	ONLINE REFERENCES

