
T his column describes a project-
based, hands-on pervasive com-

puting course offered at MIT during the
fall 2001 semester. Later, I helped distill
the course into an intensive one-week
experience that MIT offered in spring
2002 and once again in winter 2003.
Much has been learned from these three
instantiations.

The course shares intimate ties with
MIT’s Project Oxygen, a pervasive,
human-centric computing effort (for
more information about Project Oxygen
and associated technologies, see www.
oxygen.lcs.mit.edu and the August 1999
Scientific American). Project Oxygen
combines research (MIT’s Artificial Intel-
ligence Laboratory and Laboratory for
Computer Science) and industrial (Acer,
Delta, Hewlett-Packard, Nokia, NTT,
and Philips) involvement.

There were several somewhat uncon-
ventional reasons motivating the course’s
development. First and foremost, I
believe that academia’s primary product
is ideas and that a course best conveys
ideas, especially new ones. When several
new ideas are presented together in one
course, new unifying themes frequently
emerge. But I didn’t want the students to

have all the fun. I too want to learn
about and master the technology behind
my colleagues’ cool, neat, new toys, and
teaching is the best way to learn. More-
over, I wanted to recreate the crossdisci-
plinary and informal learning of the days
before students sat isolated in their dor-
mitory rooms working on their PCs. I
wanted to teach a course that involves
students working closely together and
sharing their experiences with one
another. Finally, I wanted a course that
cuts across numerous subdisciplines,
exposes students to a different view of
computer science, and provides an op-
portunity for true student innovation.

The first offering of the course,
referred to as the Boston version, met
many of these goals. Some topics were
too hard and some technologies too
immature. It was a challenge to avoid
massive student frustration. Fortu-
nately, by the third offering, referred to
as the Taiwan version, many of the
shortcomings were addressed and the
course ran fairly smoothly.

COURSE LOGISTICS
The course is mostly hands-on and

project oriented. We outfitted each stu-

dent with a Compaq iPAQ handheld
computer, an IEEE 802.11b wireless
LAN card, a 128-Mbyte memory card,
an iPAQ serial cable, and some MIT-
exclusive equipment—a BackPAQ (see
Figure 1) and a Cricket listener, which
listens for radio frequency signals and
ultrasonic pulses. The BackPaq attaches
to an iPAQ, providing two PCMCIA
(Personal Computer Memory Card
International Association) slots, a video
camera, and an accelerometer. Cricket
is an indoor location-tracking system.

Despite its hands-on focus, the course
still included lectures, tutorials, pro-
gramming assignments, and a final
project. Lectures delved into a particu-
lar technology, exposing students to
advanced material normally found in
specialized graduate courses. In the
Boston version, the lectures were the
usual hour-long seminar usually given
to a general audience. They were gen-
erally presented by a faculty member
involved in the research. We learned

What I Did on My Fall Vacation—
A Pervasive Computing Class
Larry Rudolph

100 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/03/$17.00 © 2003 IEEE

Editor: Scott F. Midkiff ■ Virginia Tech ■ midkiff@vt.edu

Education & Training

In this issue, Larry Rudolph shares his experience in developing and teaching classes in

pervasive computing at MIT and for industry. The course drew on many technologies

from MIT’s Project Oxygen. He describes goals for the course, the syllabus, problem

sets, course components, and final projects. Please let me know your comments and

suggestions for future columns. —Scott Midkiff

EDITOR’S INTRODUCTION

Course: 6.964—Pervasive Computing:

Projects in Project Oxygen

Unit: Laboratory for Computer Science

Institution: Massachusetts Institute of

Technology

Instructor: Larry Rudolph

Level: Undergraduate, graduate, and

industrial

URL: http://org.lcs.mit.edu/class.html

QUICK FACTS

that it was better to slightly narrow the
focus but delve more deeply. Moreover,
there was a lack of continuity and lack
of leverage with previous material. The
Taiwan version had fewer lecturers and
the material became more integrated.

We used tutorials to explain the
actual details of programming and
related tools. Because each technology
had its own unique installation, pro-
gramming language, and configuration
scripts— there was a steep learning
curve. The tutorials mitigated the pain
by providing sample code and by going
through the installation, compilation,
and execution of simple examples.

We initially presented the technolo-
gies in isolation, with integration hap-
pening at a later stage. At some point,
the students realized an ad hoc ap-
proach’s drawbacks. The large number
of programming languages—Perl CGI,
C, Java, Python, XML, and specialized
scripting languages—challenged every-
one. We thought we might have gone a
bit overboard and have recently started
doing everything in Python and Java,
but integration is still hard. There still
isn’t a mature integrative middleware
system for pervasive computing that
addresses most of the challenges, so we
let students appreciate the need for such
a system, rather than learn to live with
the shortcomings of an existing one.

Topics
When setting the course’s content, we

asked, Should it be broad, covering the
best technologies in the world, or nar-
row, being restricted to technologies
invented at MIT? Given many tech-
nologies’ immaturity, fragility, continual
evolution, and lack of documentation,
we decided to look inward, making the
most use of local resources. Of the tech-
nologies being investigated at MIT,
we chose the most promising ones, pro-
vided that the developers would respond
to desperate calls for help when some-
thing went wrong at the last moment.
Unfortunately, most universities do not
have this luxury, but numerous research
groups around the world would wel-

come the opportunity to share their new
technology in the classroom.

Table 1 lists the topics generally cov-
ered in the MIT and Taiwan courses.
While the students worked on their final
projects, we had time to cover pervasive
computing research going on at other
institutions.

Assignments
Programming assignments (problem

sets in MIT lingo) and a final project
were a major focus of the course. All
the assignments revolved around a
theme. The problem set theme for the
Boston version was mathematical equa-
tions—specifically, how to enter and
edit equations. We ran Mathematica on
a server, and students could interact
with it via the handheld, either in for-
matting or solving equations The theme
for the Taiwan version was an instant
messenger system, built on Jabber, a
Python-based, public-domain IM sys-
tem. Both versions had pretty much the
same set of assignments, but relevant
to their theme:

• Writing a graphical user interface to
specify equations or to log in, add a
buddy, and initiate a chat session.

APRIL–JUNE 2003 PERVASIVEcomputing 101

Figure 1. The commercial iPAQ with
BackPAQ, jointly developed by Compaq
Research Labs and MIT. The BackPAQ
contains a video camera, an accelerometer,
a microphone and headphone connectors,
and two PC card slots.

TABLE 1
Course topics.

Week Topic

1 Overview: iPAQ and other handhelds
Linux on iPAQ

2 Oxygen Project overview GUI tool: Glade, cross-compilation, Java
on handheld

3 Speech recognition (Galaxy, SpeechBuilder)
iPAQ audio server and audio streaming

4 Naming, sockets, servers and clients, self-certifying file system
Intentional Naming System

5 Cricket location detection (Indoor GPS)

6 Cricket details
Grid self-configuring ad hoc networking

7 Security and group keys
Scripting details, intelligent appliances

8 Handwriting recognition
Object detection from strokes

9 Face recognition, gestures
Vision processing (head tracking)

10 Integrative middleware: Metaglue, agents

11 Final project descriptions

12 Other pervasive computing systems (I)

13 Other pervasive computing systems (II)

14 Project presentations

• Converting the graphical interface to
a speech interface.

• Extending the system to include
handwritten equations on the iPAQ
or transmission of basic objects and
shapes drawn on the iPaq screen.

• Using the Cricket listener and bea-
cons to specify equations by walking
around the lounge or chatting with
anyone that happens to be in a par-
ticular physical place, such as near
the coffee machine.

• Integrating intentional naming and
security into the system.

• Using the Metaglue system to control
physical devices via an X-10 inter-
face. Failing to find a solution to a
mathematical equation would cause
the coffee machine to turn on or you
could send an instant message to the
coffee machine.

COURSE COMPONENTS
Here, I give some of my thoughts

regarding the course’s basic components.

The handheld
We chose to run Linux on the iPAQ,

thereby providing a full workstation’s
functionality and the use of standard
software tools. Porting Linux itself isn’t
trivial, although it’s been getting much
easier, with help from people contribut-
ing to the open source software globally.
Jamey Hicks of Hewlett-Packard’s Cam-
bridge Research Labs (CRL) greatly and
generously helped with our port. It was
a win-win situation, because the stu-
dents tickled many bugs that Jamey
would quickly fix.

A handheld GUI
We used a simple Python menu tem-

plate, the GTK+ toolkit, and Glade for
touch screen input. The menu template
is built into the window manager, and
we used files in a default directory to
build the main menu. This let students
quickly add simple shell commands by
placing files into the default directory.
Each file specifies the name and posi-
tion in the pull-down menu hierarchy
as well as the command to be executed.

The GTK++ toolkit lets you build but-
tons, menus, lists, and so on. Some
advanced students figured out how to
install Java and did this via Java’s AWT
(Abstract Window Toolkit) library.

Speech recognition
My understanding of speech recog-

nition systems comes from commercial
recognition systems, such as IBM’s
ViaVoice and MIT’s Spoken Language
System’s Galaxy System and its sim-
pler SpeechBuilder development tool.
Although I’m not familiar with all sys-
tems and approaches, I am impressed
with Galaxy. With it, you don’t need
to be an expert to prototype a small
system. Some students did really inter-
esting things although they’d never
taken a course in speech processing.

Students extended their GUIs to be
speech enabled. Although building a
speech-enabled interface is generally dif-
ficult, it’s easy to do using SpeechBuilder.
The Galaxy system uses domain-specific
recognition and a grammar defines the
domain. Writing the domain grammar
was surprisingly trivial given a GUI. A
true speech recognition system needs to
handle all manner of talking. One way to
limit this complexity is to focus on a spe-
cific individual’s speaking patterns. For
example, after just a few iterations, I can
capture most of the ways that I talk. This
is wonderful for fast prototyping but not
for real development.

Face recognition
Face recognition consists of two

phases, training and recognition. We
used the imager on the BackPAQ to col-
lect images for training and the same
imager for recognition. This reduced
the amount of training. However, re-
cognition is still not great, so to im-
prove robustness, we combined face
recognition with easy-to-use identifica-
tion mechanisms, such as voice identi-
fication. So, a student might pick up a
handheld, point it at his face and say,
“Hello, I am Larry Rudolph.” The face
recognition system produced a list of
possible candidates along with their

confidence scores. The speech recogni-
tion system did the same. Combining
the two gave very good results. This
exercise demonstrates the usefulness of
mixed identification approaches and
gave the students a flavor of multi-
modal sensor fusion, a topic that the
course should really cover directly.

Access control
Security systems aren’t exciting to

watch, and it’s hard to know if they
actually work, but they’re too impor-
tant to overlook. The self-certifying file
system (SFS), part of the iPAQ distri-
bution, works at a low enough level
that users simply trust it. It’s built using
the secure sockets layer with fairly
mature cryptographic schemes. This
lets you choose the level of authoriza-
tion, certification, and content integrity.
You can use lighter-weight systems
when security is less important.

This class focuses on a system that lets
you specify access control on the group
level. You can define a group and provide
access to a group’s resources. If you want
to revoke access privileges, you simply
remove that individual from the group,
without having to modify the resource
access lists to which that group has access.

Pen input
Personally, I would much rather have

a small device that could project onto
a flat surface and observe how I inter-
act with that surface than a touch
screen. A student in the course took a
step in this direction. With the Back-
PAQ’s camera pointed at a notebook,
you write using an ordinary pen or pen-
cil. The handheld tracks the differences
between frames and extracts strokes, as
if they were drawn on a screen. A next
step might be to capture notes taken
during a lecture and correlate them with
slides or other activities in the room.

In an exercise in using the shape
recognition toolkit, students must
convert a shape to xfig format once it’s
recognized. A slightly more involved
exercise would be to build a low-band-
width, shared whiteboard application.

EDUCATION & TRAINING

E D U C A T I O N & T R A I N I N G

102 PERVASIVEcomputing http://computer.org/pervasive

You’d map each iPAQ to a part of a
large shared space. The shapes that
you draw would get placed in the
global shared space. If this shared
space was a large wall display—per-
haps generated by multiple projec-
tors—and if each iPAQ had a location
system, your iPAQ would get mapped
to part of the shared space in front of
where you’re physically standing.

The network
The course only briefly touched net-

working, although in the future I would
dedicate more time to this topic. With
so many wireless iPAQ’s and laptops in
one small space, everyone saw the lim-
its of 802.11b. Our system administra-
tors thought one base station would
suffice, but they were wrong. So, we
missed an opportunity to really bring
home the need for congestion and other
network management techniques.

We explored new types of ad hoc net-
work technology by exercising MIT’s
Grid network. In the Grid network, you
don’t need a base station because each
handheld can forward packets. As stu-
dents wandered around the building,
the dynamic network connectivity and
topology were projected on a wall.

Location management
The underlying hardware technology

for location management is rapidly
changing. To date, no one seems to
understand the practical trade-offs well.
In this course, we concentrate on tech-
nology that provides both identifica-
tion and location. In the MIT Cricket
location system, beacons are placed in
the ceilings and walls. The beacons
broadcast their names and other signals
using both ultrasound and radio. A
cricket listener attached to the serial
port on the iPAQ could tell the name
and distance from each beacon. The
iPAQ used a table of beacon locations
to compute its location. Unfortunately,
the lack of floating-point support on
the iPAQ made this an expensive oper-
ation. Nevertheless, this was the most
exciting part of the course.

Integration and Metaglue
You can consider a pervasive com-

puting application as a collection of
interacting things, or nodes. The MIT
Metaglue system is an approach for inte-
grating interacting components. Build-
ing an interesting infrastructure to find
and connect components is actually
fairly easy, but developing all the agents
is much harder. Writing applications
mostly involves composing agents rather
than writing new ones from scratch.
Metaglue already comprises more than
a hundred agents. You can now develop
new agents fairly easily because the base
is solid. So far, the students’ experiences
seem to support this claim, as it was very
easy for them to control a wide range of
physical devices.

PROJECTS
As in many courses, the real learning

comes by doing—in this course, the final
project. I encouraged students to work in
groups and set simple ground rules. Each
project had to use several of the tech-
nologies covered in class, be a game that
involves several humans, and be fun.
Because students could use any technol-
ogy, you might consider the projects a
free-market evaluation of the technolo-
gies. Indeed, in the future, I hope to inun-
date students with technologies and see
which ones they choose.

The projects explored the intersec-
tion of virtual and physical worlds. Sur-
prisingly, although the students enjoyed
the speech-recognition problem set, it
played only a marginal role. Everyone
used location, but the games were all
fragile, matching my experience with
demonstrations of pervasive comput-

ing technology. I describe some of the
more interesting projects here.

Boggle
Students turned this well-known

word game into a contact sport. They
divided a lounge area into a 4 × 4 grid,
and a projector displayed the letters
in each grid location. Players moved
around the grid and shook the iPAQ
to grab a letter. A tap on the screen
ended the word. However, players
could only grab a letter if the grid cell
was unoccupied.

Competitive Fishing
In this game, the students turned the

lounge into the open sea. They pro-
jected on the wall a view of fish swim-
ming in the sea. Each student had an
iPAQ with a Cricket listener and joined
the game by asking, via a speech inter-
face, “Can I play?” That triggered the
placement of a ship in the ocean at the
location corresponding to the iPAQ’s
location. The iPAQ showed the fish
under the ship, which a player could
catch by using the touch screen. Mov-
ing around the lounge caused the ship
to move around the sea and, hopefully,
find better fishing spots.

Music on the Go
The students configured iPAQs to

play a variety of instruments, such as a
drum, bongo, tambourine, or keyboard
(see Figure 2). Shaking the iPAQ struck
a drum, or touching the screen played
a piano key. The type of instrument
depended on the location. So, the musi-
cal score specifies not only the note but
also the location.

EDUCATION & TRAINING

APRIL–JUNE 2003 PERVASIVEcomputing 103

Figure 2. Keyboard from the Music on the Go project.

Doom
One of the most fun games was

Doom, implemented only for a single
player. The students projected the game
on the lounge wall, but rather than using
a mouse or keyboard to move through
the Doom world, the player moved
around the lounge (see Figure 3). The
Cricket listener would send changes in
the x, y location to the server. Because
the lounge had obstacles (chairs, tables,
walls) where the Doom world might
have none, the game was particularly
challenging. When a player ran out of
space, to move forward in the Doom
world, the player pressed a button to
disconnect from the Doom server, took
a few steps backwards, released the but-
ton, and walked forward. Navigating
both the real and Doom worlds was
confusing but fun, and we learned a lot
about performance and user interaction.

B oth students and teachers can learn
much from a pervasive computing

course. Such a class requires a lot of
support, but every research group
involved has been thankful for the
opportunity to disseminate their tech-
nology, especially to a group of friendly
users. Clearly, we’ll need many more
iterations before the course content
becomes fully coherent.

We need a much larger emphasis on
defensive programming. Too many
things went wrong (and many more
could have). Students quickly devel-
oped superstitions, such as to never use
beacon 13 or always blow the dust off
the listener. When weak batteries or
poor network connections became evi-
dent, rather than using fresh batteries
or switching network cards, we should
have spun the symptoms back into the
software. For example, a beacon with

weak batteries would have its signal
detected less frequently than other bea-
cons. You could easily insert monitor
code and inform the user that batter-
ies appear weak. Similarly, you could
display a message to inform the user
when the detector serial cable comes
loose. Many students ran into the same
problems and had similarly frustrating
experiences trying to debug their soft-
ware when the hardware was flaky.
These pioneers can save their succes-
sors much frustration.

In hindsight, the course was clearly
about disambiguation technologies. That
is, most subsystems aimed to assign the
most reasonable meaning to ambiguous
input. Perhaps this will always be the case
in human interaction with machines,
especially when you desire a level of

discourse. Perhaps, paraphrasing Marc
Snir of University of Illinois, programs
are the contract between humans and
machines, and just as we’ll always need
lawyers, we’ll always need program-
mers—especially for pervasive, human-
centric computing.

ACKNOWLEDGMENTS
MIT’s industrial partners (Acer, Delta, Hewlett-
Packard, NTT, Nokia, and Philips) and DARPA,
through Office of Naval Research contract number
N66001-99-2-891702, partly support this work.
Numerous others supported the courses, helping
with specific course components and assisting with
equipment. I specifically thank Jamey Hicks (HP
CRL) and Greg Shomo (Techsquare) for iPaq and
Linux technical support, and Anant Agrawal, Todd
Amicon, Sonia Garg, Ken Steele, Kevin Quigley,
Jason Waterman, and Eugene Weinstein for help
with the courses.

EDUCATION & TRAINING

E D U C A T I O N & T R A I N I N G

104 PERVASIVEcomputing http://computer.org/pervasive

Larry Rudolph is principal research scientist at the Massachusetts Institute of Technology Laboratory

for Computer Science, head of the Oxygen Research Group, a member of the computational structures

group, and a cofaculty member of the New England Complex Systems Institute. His research interests

include parallel processing and complex systems. He has a PhD in computer science from the Courant

Institute at NYU. He is a member of the ACM and IEEE. Contact him at MIT LCS, 200 Technology Sq.,

Cambridge, MA 02139; rudolph@lcs.mit.edu; http://csg.lcs.mit.edu/~rudolph.

Wearable and Ubiquitous

Computing at Virginia Tech

next issue

Figure 3. Student playing Doom; as she moves around the physical room, she also
moves around the virtual Doom world.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

