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Abstract. People meet in order to interact - disseminating information,
making decisions, and creating new ideas. Automatic analysis of meetings
is therefore important from two points of view: extracting the informa-
tion they contain, and understanding human interaction processes. Based
on this view, this article presents an approach in which relevant informa-
tion content of a meeting is identified from a variety of audio and visual
sensor inputs and statistical models of interacting people. We present
a framework for computer observation and understanding of interact-
ing people, and discuss particular tasks within this framework, issues in
the meeting context, and particular algorithms that we have adopted.
We also comment on current developments and the future challenges in
automatic meeting analysis.

1 Introduction

The domain of human-computer interaction aims to help humans interact more
naturally with computers. A related emerging domain of research instead views
the computer as a tool to assist or understand human interactions : putting
computers in the human interaction loop [1]. Humans naturally interact with
other humans, communicating and generating valuable information. The most
natural interface for entering this information into a computing system would
therefore be for the computer to extract it directly from observing the human
interactions.

The automatic analysis of human interaction is a rich research area. There
is growing interest in the automatic understanding of group behaviour, where
the interactions are defined by individuals playing and exchanging both similar
and complementary roles (e.g. a handshake, a dancing couple, or a children’s
game) [2,3,4,5,6]. Most of the previous work has relied on visual information
and statistical models, and studied three specific scenarios: surveillance in out-
door scenes [5,6], workplaces [3,4], and indoor group entertainment [2]. Beyond
the use of visual information, dialogue modelling [7,8] analyses the structure of
interactions in conversations.
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While it has only recently become an application domain for computing re-
search, observation of human interactions is not a new field of study - it has been
actively researched for over fifty years by a branch of social psychologists [9,10,
11]. For example, research has analysed turn-taking patterns in group discus-
sions [12,13,14], giving insight into issues such as interpersonal trust, cognitive
load in interactions, and patterns of dominance and influence [11]. Research
has also shown that interactions are fundamentally multimodal, with partici-
pants coordinating speaking turns using a variety of cues, such as gaze, speech
back-channels, changes in posture, etc. [12,13,15]. In general, visual informa-
tion can help disambiguate audio information [16], and when the modalities are
discrepant, participants appear to be more influenced by visual than by audio
cues [11,17].

Motivated therefore by a desire to move towards more natural human-
machine interfaces, and building upon findings of social psychologists regard-
ing the mechanisms and significance of human interactions, this article presents
an observational framework for computer understanding of human interactions,
focussing on small group meetings as a particular instance.

Meetings contain many complex interactions between people, and so auto-
matic meeting analysis presents a challenging case study. Speech is the predomi-
nant modality for communication in meetings, and speech-based processing tech-
niques, including speech recognition, speaker identification, topic detection, and
dialogue modelling, are being actively researched in the meeting context [18,8,
19,20]. Visual processing, such as tracking people and their focus of attention,
has also been examined in [1,21]. Beyond this work, a place for analysis of text,
gestures, and facial expressions, as well as many other audio, visual and mul-
timodal processing tasks can be identified within the meeting scenario. While
important advances have been made, to date most approaches to automatic
meeting analysis have been limited to the application of known technologies
to extract information from individual participants (e.g. speech, gaze, identity,
etc). Intuitively, the true information of meetings is created from interactions
between participants, and true understanding of meetings can only emerge from
considering their group nature.

The remainder of this article is organised as follows. Section 2 describes a
multi-sensor meeting room that we have installed to enable our research. A
framework for computer understanding of human interactions is outlined in Sec-
tion 3, along with some specific issues and algorithms related to the meeting
context. Finally, some perspective on future directions in automatic meeting
analysis is given in Section 4, followed by concluding remarks in Section 5.

2 A Multi-sensor Meeting Room

As mentioned above, interactions between people in meetings are generally multi-
modal in nature. While the audio modality is the most obvious source of informa-
tion in discussions, studies have shown that significant information is conveyed in
the visual modality, through expressions, gaze, gestures and posture [12,13,15].
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In meetings, the textual modality is also important, with presentation slides,
whiteboard activity, and shared paper documents providing detailed informa-
tion.

Microphone
Array

Rack
Equipment

Lapel
Microphone

WhiteboardProjector Screen

Meeting Table

Camera

Participant

Fig. 1. Meeting recording configuration

To facilitate research into automatic meeting analysis, a meeting room at
IDIAP has been equipped with multi-media recording facilities. The audio infor-
mation is captured using up to 24 microphone channels, including microphone
arrays, a binaural manikin, and lapel microphones attached to each meeting
participant. Visual information is acquired using three closed circuit television
cameras equipped with wide angle lenses. These cameras capture frontal video
of meeting participants, as well as wide angle views of the entire meeting room.
Textual information is also acquired from presentations and whiteboard usage.
Presentation slides are captured from a ceiling-mounted data projector at na-
tive VGA resolutions and all whiteboard activity is acquired using transmitting
pens and a receiver attached to a standard whiteboard. The acquisition of all
modalities is completely synchronised and all data streams are accurately time-
stamped.

To date, meeting recording efforts at IDIAP have focussed on the compila-
tion of an audio-visual corpus of approximately sixty, five-minute, four-person
scripted meetings. The meeting room configuration used for these recordings is
illustrated in Figure 1. Two cameras were used to capture frontal views of the
meeting participants (including the table region used for note-taking), while the
third camera recorded a view of the whiteboard and presentation screen at the
front of the room. An eight-element circular equi-spaced microphone array of
20cm diameter was centrally located on the meeting table.
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The resulting five hours of multi-channel, audio-visual meeting data is
available for public distribution through a MultiModal Media file server at
mmm.idiap.ch. A new round of meeting collection will be launched in the near
future, and will utilise the recently added slide and whiteboard capture capabil-
ties.

3 Multimodal Processing

We propose a framework for computer understanding of human interactions that
involves the following basic steps in a processing loop :

1. locate and track participants
2. for each located participant

a) enhance their audio and visual streams
b) identify them
c) recognise their individual actions

3. recognise group actions

The first step is necessary to determine the number and location of partici-
pants. For each person present, we then extract a dedicated enhanced audio and
visual stream by focussing on their tracked location. Audio-visual (speech and
face) speaker identification techniques can then be applied to determine who
the participant is. Individual actions, such as speech activity, gestures or speech
words may also be measured or recognised from the audio and visual streams.
The ultimate goal of this analysis is then to be able to recognise actions belonging
to the group as a whole, by modelling the interactions of the individuals.

Specific issues and algorithms for implementing a number of these steps for
the case of meeting analysis are presented in the following sub-sections. A pri-
mary focus of our research is the multimodal nature of human interactions in
meetings, and this is reflected in the choice of tasks we have included. Naturally,
there are many other processing tasks involved in understanding meetings, such
as speech recognition and dialogue modelling, that are not covered here.

3.1 Audio-visual Speaker Tracking

The problem in the global view. Locating and tracking speakers represents
an important first step towards automatic understanding of human interactions.
As mentioned previously, speaker turn patterns convey a rich amount of in-
formation about the behaviour of a group and its individual members [10,13].
Furthermore, experimental evidence has highlighted the role that non-verbal be-
haviour (gaze, facial expressions, and body postures) plays in interactions [13].
Recognising such rich multimodal behaviour first requires reliable localisation
and tracking of people.
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Challenges in the meeting context. The separate use of audio and video as
cues for tracking are classic problems in signal processing and computer vision.
However, sound and visual information are jointly generated when people speak,
and provide complementary advantages. While initialisation and recovery from
failures can be addressed with audio, precise object localisation is better suited
to visual processing.

Long-term, reliable tracking of multiple people in meetings is challenging.
Meeting rooms pose a number of issues for audio processing, such as reverber-
ation and multiple concurrent speakers, as well as for visual processing, includ-
ing clutter and variations of illumination. However, the main challenge arises
from the behaviour of multiple participants resulting in changes of appearance
and pose for each person, and considerable (self)-occlusion. At the same time,
meetings in a multi-sensor room present some advantages that ease the loca-
tion and tracking tasks. Actions usually unfold in specific areas (meeting table,
whiteboard, and projector screen), which constrains the group dynamics in the
physical space. In addition, the availability of multiple cameras with overlapping
fields of view can be exploited to build more reliable person models, and deal
with the occlusion problems.

Our approach. We have developed a principled method for speaker tracking,
fusing information coming from multiple microphones and uncalibrated cameras
[22], based on Sequential Monte Carlo (SMC) methods, also known as particle
filters (PFs) [23]. For a state-space model, a PF recursively approximates the
conditional distribution of states given observations using a dynamical model
and random sampling by (i) generating candidate configurations from the dy-
namics (prediction), and (ii) measuring their likelihood (updating), in a process
that amounts to random search in a configuration space. Data fusion can be
introduced in both stages of the PF algorithm.

Our work is guided by inherent features of AV data. First, audio is a strong
cue to model discontinuities that clearly violate usual assumptions in dynamics
(including speaker turns across cameras), and (re)initialisation. Its use for pre-
diction thus brings benefits to modelling real situations. Second, audio can be
inaccurate at times, but provides a good initial localisation guess that can be
enhanced by visual information. Third, although audio might be imprecise, and
visual calibration can be erroneous due to distortion in wide-angle cameras, the
joint occurrence of AV information in the constrained physical space in meetings
tends to be more consistent, and can be learned from data.

Our methodology exploits the complementary features of the AV modalities.
In the first place, we use a 2-D approach in which human heads are visually rep-
resented by their silhouette in the image plane, and modelled as elements of a
shape-space, allowing for the description of a head template and a set of valid ge-
ometric transformations (motion). In the second place, we employ a mixed-state
space, where in addition to the continuous subspace that represents head motion,
we include a discrete component that indicates the specific camera plane in which
a speaker is present. This formulation helps define a generative model for camera
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switching. In the third place, we asymmetrically handle audio and video in the
PF formulation. Audio localisation information in 3-D space is first estimated
by an algorithm that reliably detects speaker changes with low latency, while
maintaining good estimation accuracy. Audio and skin-color blob information
are then used for prediction, and introduced in the PF via importance sampling,
a technique which guides the search process of the PF towards regions of the
state space likely to contain the true configuration (a speaker). Additionally,
audio, color, and shape information are jointly used to compute the likelihood of
candidate configurations. Finally, we use an AV calibration procedure to relate
audio estimates in 3-D and visual information in 2-D. The procedure uses easily
generated training data, and does not require precise geometric calibration of
cameras and microphones [22].

a

b

c

d

Fig. 2. Tracking speakers in the meeting room. Frames 100, 1100, 1900, and 2700.

The result is a method that can initialise and track a moving speaker, and
switch between multiple people across cameras with low delay, while tolerating
visual clutter. An example for the setup of Figure 1 is shown in Figure 2. For a
two-minute sequence, the system tracked the current speaker in the correct cam-
era in approximately 88% of the frames, while keeping the localisation error in
the corresponding image plane within a few pixels. Other AV tracking examples
for single- and multi-camera set-ups can be found at www.idiap.ch/˜gatica.
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Open problems. Although the current methodology is useful in its current
form, there is much room for improvement. In the following we identify three
specific lines of research. We are currently generalising our formulation to a
multiple-object AV tracker, which involves the integration of person-dependent
appearance models, and the consistent labelling of tracked objects along time and
across cameras. Multi-object tracking significantly increases the dimensionality
of the state space, which calls for efficient inference mechanisms in the resulting
statistical model. Another line of research is the integration of more robust
person models. The third line of research is the joint formulation of tracking
and recognition. Specifically, we are building head trackers that simultaneously
estimate head orientation (a simple form of recognition), which is in turn a strong
cue for detection of focus of attention, and useful for higher-level recognisers.

3.2 Speech Segmentation and Enhancement Using Microphone
Arrays

The problem in the global view. Having located and tracked each person, it
is next necessary to acquire an enhanced dedicated audio channel of their speech.
Speech is the predominant communication modality, and thus a rich source of
information, in many human interactions.

Most state-of-the-art speech and speaker recognition systems rely on close-
talking head-set microphones for speech acquisition, as they naturally provide a
higher signal-to-noise ratio (SNR) than single distant microphones. This mode
of acquisition may be acceptable for applications such as dictation, however as
technology heads towards more pervasive applications, less constraining solutions
are required. Microphone arrays present a promising alternative to close-talking
microphones, as they allow for signal-independent enhancement, localisation and
tracking of speakers, and non-intrusive hands-free operation. For these reasons,
microphone arrays are being increasingly used for speech acquisition in such
applications [24,25].

Challenges in the meeting context. Meetings present a number of interest-
ing challenges for microphone array research. A primary issue is the design of
the array geometry : how many microphones should be used, and where should
they be placed in the room? Naturally a geometry giving high spatial resolution
uniformly across a room is desirable for best performance and lowest constraint
on the users, however this requires prohibitively large numbers of microphones,
and complex installation [26]. For these reasons, more practical solutions with
smaller numbers of microphones need to be researched to address computational
and economical considerations.

A second challenge in the meeting context is the natural occurrence of over-
lapping speech. In [27] it was identified that around 10-15% of words, or 50%
of speech segments, in a meeting contain a degree of overlapping speech. These
overlapped segments are problematic for speaker segmentation, and speech and
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speaker recognition. For instance, an absolute increase in word error rate of be-
tween 15-30% has been observed on overlap speech segments using close-talking
microphones [27,8].

Our approach. While it is clear that a large microphone array with many
elements would give the best spatial selectivity for localisation and enhancement,
for microphone arrays to be employed in practical applications, hardware cost
(microphones, processing and memory requirements) must be reduced. For this
reason, we focus on the use of small microphone arrays, which can be a viable
solution when assumptions can be made about the absolute and relative locations
of participants.
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Fig. 3. Microphone array directivity patterns at 1000 Hz (speaker 1 direction in bold)

As shown in Figure 1, the particular array geometry we have chosen is an
8-element circular array (of radius 10cm) placed at the centre of the meeting
table. This geometry and placement was selected based on the assumption that
a meeting generally consists of small groups of people seated and talking face
to face in well-defined regions. Each array is designed to cater for a small group
of up to 4 people. In larger meetings, multiple (potentially interacting) small
array modules are positioned along the table, where each module is responsible
for the people in its local region. The circular geometry was selected as it gives
uniform spatial selectivity between people sitting around it, leading to good
general performance in separating overlapping speech. This is important for
meetings where background noise is generally low, and so overlapping speech is
the primary noise source. To illustrate, Figure 3 shows the theoretical directivity
pattern (array gain as a function of direction) for the array at 1000 Hz for 4
speakers separated by 90 degrees. Having the array on the table also means it is
placed in close proximity to participants, leading to naturally high signal levels
compared to background noise caused by distant sources.
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Given accurate tracking of the speaker locations in the room, the next task
is to determine segments of continuous speech from a given speaker location.
Speaker segmentation in meetings is problematic for traditional techniques based
on simple energy or spectral features, as a significant amount of cross-talk from
other speakers exists even on close-talking microphones [28,29]. In [30,31] we
presented a location-based segmentation technique that is capable of providing
a smooth speech/silence segmentation for a given room location. As it is based
on speech location features from the microphone array, rather than standard
spectral features, this location-based segmentation has the important benefit of
being able to accurately handle multiple concurrent speakers (identifying which
locations are active at any given time). As an example, our current system
is capable of segmenting four person meetings, including overlapping speech
segments, with over 95% frame accuracy [31].

Once the location of the speakers is known along with their speech activ-
ity segmentation, we can then apply microphone array beamforming techniques
to enhance their speech, attenuating background noise and conflicting speech
sources. Beamforming consists of filtering and combining the individual micro-
phone signals in such a way as to enhance signals coming from a particular loca-
tion. For beamforming filters, we adopt standard superdirective filters, which are
calculated to maximise the array gain for the desired direction [32]. In addition,
we apply a Wiener post-filter to the beamformer output to further reduce the
broadband noise energy. The post-filter is estimated from the auto- and cross-
spectral densities of the microphone array inputs, and is formulated assuming a
diffuse background noise field [33]. This post-filter leads to significant improve-
ments in terms of SNR and speech recognition performance in office background
noise [33], and has also been shown to out-perform lapel microphones for a small
vocabulary recognition task in significant levels of overlapping speech [34].

Open problems. While microphone array speech processing techniques are
already relatively mature, a number of open issues remain in this context. As
mentioned briefly, larger meetings could be catered for by a series of small micro-
phone array modules working together. A current focus of our research is thus
to propose algorithms for these interactions between modules. Further research
is also focussing on issues related to the real-time implementation of multiple
concurrent beamformers.

3.3 Audio-visual Person Identification

The Problem in the Global View. Identifying participants is important
for understanding human interactions. When prior knowledge about the par-
ticipants is available (such as their preferred way of communicating, topics of
interests, levels of language, relative hierarchical levels in a given context, etc),
knowing the participants’ identities would imply knowing this prior information,
which could in turn be used to better tune the algorithms used to analyse the
interaction. Fortunately, biometric authentication [35], which is the general prob-
lem of authenticating or identifying a person using his or her behavioural and
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physiological characteristics such as the face or the voice, is a growing research
domain which has already shown useful results, especially when using more than
one of these characteristics, as we propose to do here.

Challenges in the Meeting Context. In order to perform AV identification
during a meeting, we need to extract reliably the basic modalities. For the face,
we require a face localisation algorithm that is robust to the kind of images
available from a video stream (relatively low-quality and low-resolution), robust
to the participants’ varying head poses, and able to cope with more than one
face per image. This could be done using our AV tracking system described in
Section 3.1. For the voice, taking into account that several microphones are avail-
able in the meeting room, the first challenge is to separate all audio sources and
attribute each speech segment to its corresponding participant. Again, this could
be done using our speaker segmentation and enhancement techniques, described
in Section 3.2. Afterward, classical face and speaker verification algorithms could
be applied, followed by a fusion step, which provides robustness to the failure of
one or the other modality. Finally, an identification procedure could be applied.

Our Approach. Our identification system is based on an AV biometric veri-
fication system. Assuming that we are able to obtain reliable speech segments
and localised faces from the meeting raw data, we can then apply our state-of-
the-art verification system, which is based on a speaker verification system, a
face verification system, and a fusion module.

Our speaker verification system first starts by extracting useful features
from the raw speech data: we extract 16 Linear Predictive Cepstral Coefficient
(LPCC) features every 10 ms, as well as their first temporal derivative. Then,
a silence detector based on an unsupervised 2-Gaussian system is used to re-
move all silence frames. Finally, the verification system itself is based on the
modelling of one Gaussian Mixture Model (GMM) for each individual, adapted
using Maximum A Posteriori (MAP) techniques from a World Model trained
by Expectation-Maximisation on a large set of prior data. The score for a given
access is obtained as the logarithm of the ratio between the likelihood of the
data given the individual model and the likelihood given the world model. This
system obtains state-of-the-art performance on several benchmark verification
databases [36].

Our face verification system is based on a non-holistic view: instead of ex-
tracting features from a full face image that are then handled by a classifier, as it
is often done [37], we extract Discrete Cosine Transform (DCT) -based features
from overlapping blocks of the image (square patches that span the whole face
image), using the DCTmod2 technique [38], which has shown state-of-the-art
performance in several cases. Finally, we model the obtained feature vectors us-
ing GMMs, similarly to the speaker verification system, hence using the same
scoring technique.

Our fusion algorithm is based on Multi-layer Perceptrons (experiments with
Support Vector Machines give similar performances). The fusion model takes as
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input the log likelihood scores coming from both the face and the speaker verifi-
cation systems, and combines them non-linearly in order to obtain a unified and
more robust overall score. Optionally, confidence values could also be computed
on both the voice and face scores, which then enhance the quality of the fusion
model [39].

Finally, in order to identify the correct individual, the whole verification
system is run over all previously stored individual models, and the model corre-
sponding to the highest obtained score over a pre-defined threshold (in order to
account for unknown individuals) identifies the target individual.

Open Problems. Assuming that speaker segmentation and face tracking have
given perfect segmentation, for a given meeting, we will have potentially several
minutes of speech and face data per individual. In general, a classical verification
system only requires a few face images and less than one minute of speech data
to attain acceptable performance. However, the environment is unconstrained,
the meeting data may be noisy for different reasons - the individual may not
always look at the camera and speak loudly and intelligibly. In this case, rather
than using all available data to identify a person, a better solution could be to
be more strict on the selection of faces and speaker segments in order to keep
only the best candidates for identification. Hence, we should try to remove highly
noisy or overlapping speech segments, badly tracked face images and faces that
are not in a good frontal pose and good lighting condition.

3.4 Group Action Recognition

The problem in the global view. The ultimate goal of automatic analysis
of human interactions is to recognise the group actions. As discussed previously,
the true information of meetings is created from interactions between partici-
pants playing and exchanging roles. In this view, an important goal of automatic
meeting analysis is the segmentation of meetings into high-level agenda items
which reflect the action of the group as a whole, rather than just the behaviour
of individuals (e.g. discussions and presentations, or even higher level notions,
like planning, negotiating, and making decisions).

Challenges in the meeting context. Recognition of group actions in meet-
ings entails several important problems for which no satisfactory solutions cur-
rently exist. These include (1) devising tractable multi-stream sequence models,
where each stream could arise from either a modality (AV) or a participant; (2)
modelling asynchronicity between participants’ behaviour; (3) extracting fea-
tures for recognition that are robust to variations in human characteristics and
behaviour; (4) designing sequence models that can integrate language features
(e.g. keywords or dialog acts) with non-verbal features (e.g. emotion as captured
from audio and video); and (5) developing models for recognition of actions that
are part of a hierarchy.
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One potentially simplifying advantage to recognise group actions in meetings
is that participants usually have some influence on each other’s behaviour. For
example, a dominant speaker grabbing the floor often makes the other partici-
pants go silent, and a presentation will draw most participants’ attention in the
same direction. The recognition of some group actions can be therefore benefit
from the occurrence of these multiple similar individual behaviours.

Our approach. We have addressed meeting group action recognition as the
recognition of a continuous, non-overlapping, sequence of lexical entries, analo-
gous to observational approaches in social psychology for analysis of group inter-
action [10], and to speech or continuous gesture recognition [40,41]. Continuous
recognition generates action-based meeting segmentations that can be directly
used for browsing. Furthermore, the definition of multiple lexica would provide
alternative semantic views of a meeting. Note that in reality, most group actions
are characterised by soft (natural) transitions, and specifying their boundaries
beyond a certain level of precision has little meaning.

In particular, we have modelled meeting actions based on a set of multimodal
turn-taking events. Speaking turns are mainly characterised by audio informa-
tion, but significant information is also present in non-verbal cues like gaze and
posture changes [13], which can also help disambiguate audio information [16].
The specific actions include monologues (one participant speaks continuously
without interruption), discussions (all participants engage in a discussion), pre-
sentations (one participant at front of room makes a presentation using the
projector screen), white-boards (one participant at front of room talks and uses
the white-board), and group note-taking (all participants write notes).

To investigate the multimodal and group natures of the actions, we used a
variety of Hidden Markov Models (HMMs) [40] to combine the streams of infor-
mation (with streams representing modalities or people) in different ways. The
models include early integration HMMs, multi-stream HMMs [42], and asyn-
chronous HMMs [43]. Furthermore, the individual behaviour of participants was
monitored using features from both the audio and visual modalities (including
speech activity, pitch, energy, speaking rate, and head and hand location and
motion features).

A detailed account of our experiments and results can be found in [44]. For
experiments, we used the meeting corpus described in Section 2. Meetings fol-
lowed a loose script to ensure an adequate amount of examples of all actions, and
to facilitate annotation for training and testing, but otherwise the individual and
group behaviour is natural. In summary, the best action error rate (equivalent to
the word error rate in speech recognition) that we obtained on an independent
test set was 5.5% using a two-stream HMM, where one stream modelled audio
features, and the other modelled video features coming from all participants.
Several other models (audio-only, AV early-integration, and AV asynchronous)
produced competitive results. As expected, for this set of actions audio was the
main source of information for reliable recognition, while video mostly helped in
reducing monologue and discussion errors.
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Fig. 4. Simple meeting browser interface, showing recognised meeting actions.

An example of the application of the action recognition results for meeting
browsing is shown in Figure 4.

Open problems. The experience gained from our results confirms the impor-
tance of modelling the interactions between individuals, as well as the advan-
tage of a multimodal approach for recognition. We believe there is much scope
for work towards the recognition of different sets of high-level meeting actions,
including other multimodal turn-taking events, actions based on participants’
mood or level of interest, and multimodal actions motivated by traditional dia-
logue acts. To achieve this goal, ongoing and future work will investigate richer
feature sets, and appropriate models for the interactions of participants. Another
task will be to incorporate prior information in the recognition system, based on
the participant identities and models of their personal behaviour. We also plan
to collect a larger meeting corpus, and work on the development of more flexible
assessment methodologies.

4 Future Directions

From the framework outlined in the beginning of Section 3, while much room
clearly remains for new techniques and improvements on existing ones, we can
see that steps 1-2(c) are reasonably well understood by the state-of-the-art. In



248 I. McCowan et al.

contrast, we are far from making similar claims regarding step 3, recognition of
group actions.

The first major goal in computer understanding of group actions, is to clearly
identify lexica of such actions that may be recognised. A simple lexicon based on
multimodal turn-taking events was discussed in Section 3.4, however there is a
need to progress towards recognition of higher level concepts, such as decisions,
planning, and disagreements. In this regard, the social psychology literature rep-
resents an important source of information for studies on the tasks and processes
that arise from human interactions, as was discussed in [44].

Having identified relevant group actions, a further research task is then to
select appropriate features for these actions to be recognised. At this moment,
features are intuitively selected by hand, which has obvious limitations. Ap-
proaches for feature selection could arise from two areas. The first one is human.
We require a deeper understanding of human behaviour. Existing work in psy-
chology could provide cues for feature selection towards, for example, multimodal
recognition of emotion [45]. The second one is computational. Developments in
machine learning applied to problems in vision and signal processing point to
various directions [46].

Finally, to recognise the group actions, there is a need to propose models
capable of representing the interactions between individuals in a group (see e.g.
[47,5,44]). Some particular issues are the need to model multiple data streams,
asynchronicity between streams, hierarchies of data and events, as well as fea-
tures of different nature (e.g. discrete or continuous).

5 Conclusion

This article has discussed a framework for computer understanding of human
interactions. A variety of multimodal sensors are used to observe a group and
extract useful information from their interactions. By processing the sensor in-
puts, participants are located, tracked, and identified, and their individual ac-
tions recognised. Finally, the actions of the group as a whole may be recognised
by modelling the interactions of the individuals.

While initial work in this direction has already shown promising progress and
yielded useful results, it is clear that many research challenges remain if we are
to advance towards true computer understanding of human interactions.
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