
13i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

JONAS LÖWGREN AND ERIK STOLTERMAN methods & tools

F
INTRODUCTION

For several decades, the field of design methodology has addressed design processes,

epistemological considerations, and work practices in the design disciplines [2, 10, 11,

13]. There are good reasons for considering the development of software as a design

discipline [7, 14]. Design methodology as a general field has developed across disciplines,

primarily architecture, engineering design, and industrial design. This body of knowledge

is not well known in our discipline but appears to be highly relevant. In this article, we

introduce a number of design methods from other design disciplines and the literature on

design methodology. We hope that they will prove useful for software designers.

Design Methodology and
Design Practice

Don Bishop ©1997 Artville, LLC

First, a word on our view of methods.
Some argue that the way to get better systems
is to concentrate on developing and dissemi-
nating better methods. A good example is
Butler [1], who summarizes 10 years of devel-
opment in usability engineering (UE) as fol-
lows: “UE provides systematic tools and
methods for the complex task of designing
user interfaces that can be readily compre-
hended, quickly learned and reliably oper-
ated.” To us, it seems clear that the result of
any process will never be better than the
people who participate in the process. The
implication for software design is that the
skills and abilities of the designer determine
the quality of the final system. It follows that
methods should be seen as tools for devel-
oping the designer’s abilities.

By describing a particular work practice
that has proved useful to other designers, we
provide the reader with opportunities to
develop his or her own practice. The choice of
a particular method can never be made in a
general way; instead, it must always be related
to the situation at hand and the people
involved.

John Christopher Jones published the first
edition of his milestone design book Design
Methods: Seeds of Human Futures in 1970 [4].
In the introduction, he writes about different
views on the designer and on design methods.
If the designer is seen as a black box, gener-
ating creative solutions without being able to
explain or illustrate how the solutions came
about, then the methods will be focused on
facilitating and supporting the inexplicable
creative processes. The other extreme is to
view the designer as a glass box where every
step in the design process is rational and eli-
gible for description and transfer. Glass box
methods tend to be systematic and assume
sequential processes with hierarchical decom-
position of problems into subproblems. A
third view is to think of the designer as a self-
organizing system with the abilities to search
for ideas and solutions, combined with the
assessment of its own processes. The corre-
sponding methods have strong traits of meta-
thinking and support the designer’s reflection
on work processes and design strategies.

14

In the terms of Jones’s taxonomy, we would
adhere to the view of designers as self-orga-
nizing systems with constructive as well as
reflective skills. To describe a method is a way
to provide designers with access to a way of
working that they perhaps did not know
before. The designer must assume the full
responsibility for assessing the applicability
and effects of the method in question, assimi-
late it with his current “toolbox” and use it
independently and creatively in appropriate
situations. Hence, we provide rather brief
descriptions of the methods used to facilitate
initial assessment and full references for the
further studies that are needed for assimila-
tion.

Since our purpose here is to argue that soft-
ware design could benefit from other, more
traditional design disciplines, we have chosen
to be brief in presenting our methods. Instead,
we close with a discussion on how we believe
designers should relate to methods when the
purpose is not only to produce results effec-
tively and efficiently, but also to develop and
improve their design ability.

Examples of the Methods
The three methods we present here are all ori-
ented toward early phases of the design
process, where concepts and ideas are the
main currencies. The reason is simply that the
later phases—including detailed design,
implementation, and evaluation—are already
addressed more extensively in the literature
and are perhaps also less problematic. Our
choice of methods is not meant to be compre-
hensive, perhaps not even the best possible.
Instead we present examples of methods that
can be tried out very simply without putting
too much effort into the learning process. The
three methods are (1) function analysis, (2)
why-why-why, and (3) innovation by
boundary shifting. The sidebar gives brief
introductions to another handful of methods
with references.

Function Analysis
Participatory design, contextual design, and
many other software design methods are fun-
damentally based on knowing the intended

Jonas Löwgren

Art and Communication

Malmö University

College

205 06 Malmö, Sweden

Jonas.Lowgren@kk.mah.se

Erik Stolterman

Department of

Informatics

Umeå University

01 87 Umeå, Sweden

erik@informatik.umu.se

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

with a local hospital where the administra-
tion of X-ray images appears to be a source
of problems. The existing image archive is
similar to a library where all the images are
kept. Doctors and other authorized staff fill
out request forms and the images arrive in
a day or two through in-house mail, unless
someone else has borrowed them.

We put together a simple function
analysis in order to structure the problem
and to learn what we need to find out more
about. The basis for our analysis is a
handful of short conversations with people
at the hospital, and a demo of a commer-
cial teleradiology product. The transcript
in Figure 1 shows our first take on the sit-
uation.

Even though the example is simple, the
idea of concentrating on the “whats” of the
planned system should be clear.

Landqvist [6] further recommends that
the function analysis be combined with the
results from subsequent how-oriented
activities. For instance, if a brainstorming
session (see the sidebar) is used to generate
a number of design concepts and product
ideas, a matrix can be constructed in which
the functions from the function analysis are
placed in the rows and the different design
concepts in the columns. Each cell in the
matrix corresponds to an assessment of
how well the design concept in the column
responds to the functional need in the row.
If the assessments are made numerically,
each column can be added up and a quan-
titative ranking of the design concepts is
obtained; however, it might be difficult to
assign numbers to complex and context-

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9 15

users and use contexts of the system to be
developed. When a product is planned for a
broad market, it is often much harder to find
intended users and involve them in the design
process. It is, of course, not impossible, as
examples such as Kyng [5] demonstrate, but
still not always feasible. The foundation on
which to develop concepts is instead often a
compilation of information from many dif-
ferent sources: studies of competing products,
market research by ourselves, market research
by others, interviews with people from the
target population, interviews with application
domain specialists, field studies of intended
use situations, and so on. Landqvist [6]
describes the method of function analysis from
the field of industrial design. Its purpose is to
summarize and structure the available infor-
mation and to decide where more information
is needed.

The main idea of a function analysis is to
express what the future product should do
(i.e., what functions it should have), but not
how. Functions are expressed in two words
each: a verb and a noun. There are four types
of functions. There is always one main func-
tion—the essential idea or purpose of the
product. Other functions that are required for
the product to fulfill its purpose are called nec-
essary. Functions that are nice to have but not
necessary are desirable. Finally, functions that
have been proposed but later ruled out are
classified as unnecessary. Unnecessary func-
tions are not taken out of the analysis, because
they serve as a record of what went on earlier
and may facilitate inter-project learning.

To illustrate a simple function analysis,
imagine that we have initiated discussions

Figure 1. Transcript from a preliminary function analysis.

Functions Classification Notes

Provide X-ray images Main function The essential purpose of the product

Search for X-ray images Necessary

Enhance X-ray images Desirable Edge detection, contrast, brightness, etc; may be
permanent operations or different for each session

Store new X-ray images Necessary

Manage image archive Necessary

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

— Why?
— There is no way to know in advance

how long it is going to take to get the
images.

— Why?
— If somebody else has borrowed the

images I want, then I have to wait until
they are returned.

— Why?
— There is only one copy of each image.
Note that the why-chains can stretch in

many different directions, depending on how
the whys are interpreted and whose perspec-
tive is assumed in providing answers.

— I am not happy with the way X-ray
images are handled today.

— Why?
— Because I get the wrong pictures some-

times.
— Why?
— The people at the image archive make

mistakes.
— Why?
— Don’t know. I suppose they are over-

worked.
Why-chains like these can be used to

spawn different design concepts, depending
on which part of the chain is used for entry
and which values are brought to the design
work. The preceding examples could motivate
a focus on improving the conditions in the
image archive: improved procedures, rapid
feedback on image requests, different modes
of communication between clients and
archive, several copies of each image, and so
on. For a software designer, it might be nat-
ural to envision a support system for the
image archive staff, dealing with digital
request forms and information about the
images, such as where they are stored in the
archive and who has checked them out. Such
a system could even notify the client automat-
ically if all copies of the requested image are
on loan. The result would be a bit like a
library system.

It is important to note that the why-why-
why method is merely a way of broadening
the design possibilities. Formulating fruitful
why-chains requires the ability to distinguish
promising paths from dead ends.

dependent assessments. The main benefit of
the combination matrix may well lie in the
systematic cross-check of all concepts against
all functions.

The idea of using verbs and
nouns as drivers of early

analysis work can be found
in many object-oriented

analysis methods, where
they typically corre-
spond to methods and
objects in subsequent
system design. The
classification of func-

tions is a standard tech-
nique in requirement

analysis within informa-
tion systems development.

The combination matrix sug-
gested by Landqvist is similar to the

QFD A-1 matrix that, for example, Lundell
and Williams [9] report using in the same
way. The main reason for presenting function
analysis here is Landqvist’s experience that it
helps creative and concept-oriented industrial
designers spend some time on the whats
before diving into the hows. We believe that it
can yield the same benefits in certain software
design contexts.

Why-Why-Why?
It is nearly always good design practice to look
beyond the problem as stated. In early phases,
it is a way to direct the attention to areas
where potentially powerful design concepts
might be found, before any commitments are
made. One way to do this is to ask a series of
why questions and build a chain of connec-
tions backwards from the initial formulation
[4]. To illustrate how this works, assume that
the X-ray image project we mentioned earlier
originated from a doctor’s dissatisfaction with
the current means for obtaining specific
images. We create a hypothetical conversation
as follows.

— I am not happy with the way X-ray
images are handled today.

— Why?
— Because I have to request images

several days before I need them.

16

17

system. A robot archive is not economically
feasible.
3. Identify resources outside the assumed

problem boundaries that might be made
available by transforming the problem.
There are, of course, many potentially

useful resources. Three of the most promising
ones are that (a) doctors and other clients rec-
ognize the proper images when they see them,
(b) clients spend time today filling out request
forms and that time could be used for some-
thing else, and (c) there are good routines in
place for managing other patient information
in the form of journals.
4. Seek compatible solutions that would pro-

vide channels for the use of some or all of
these resources.
A possible solution using resource 3(c)

would be to dismantle the central image
archive and keep X-ray images in the patient
journals. Resources 3(a) and 3(b) can be com-
bined in a different solution where clients use
the time they spend today filling out request
forms to do their own searching in a database
of digitized X-ray images.

The example illustrates how the method
can be used to shift the problem boundaries
that were previously taken for granted; that is,
that the role of the image archive is to manage
and provide photographic copies of X-ray
images. The possible solutions move in dif-
ferent directions; the first is oriented toward
organizational intervention, whereas the
second proposes a new storage medium for
the images with a host of new implications.

We can also note that the consequences of
the two ideas are quite far-reaching, even to
the point that the whole design concept must
be rethought. We are no longer thinking
about a support system for the image archive,
but rather a change in the larger system in
which image providers (archive) and image
consumers (clients) both take part.

Innovation by boundary shifting is a way to
support “thinking outside the box” and to
draw on knowledge from other fields and
other perspectives when faced with a hard
design problem. In this aim, it is clearly related
to de Bono’s notion of “lateral thinking” and
the methods that are based thereupon (see [3]

— I am not happy with the way X-ray
images are handled today.

— Why?
— Because I am in a terrible mood.
— Why?
— Because my spouse and I had a fight

before I left home this morning.
The why-chains are simpler versions of the

means-ends hierarchies elaborated by
Rasmussen and associates in the method called
ecological interface design (see, e.g., [12]).
They also correspond to common design
sense: do not only try to solve the problem, but
also question it. The reason for elevating why-
why-why to method status is that it can serve
as a tool in learning the healthy practice of tra-
versing abstraction levels in design.

Innovation by Boundary Shifting
One of the most critical stages in the design
process is when the fuzzy and incomplete
design concepts have to start being refined
and elaborated into more tangible representa-
tions. The danger of getting locked into a spe-
cific way of regarding the problem is
imminent as the time for hard commitments
comes up. Many important design decisions
are made, sometimes implicitly and without
reflection. Jones [4] describes innovation by
boundary shifting as a way to move the explo-
ration outside the problem boundaries that
are implicitly taken for granted and to apply
knowledge from new fields to the problem.
The method has four steps; we illustrate them
using the X-ray image example.
1. Identify the essential functions of any

device that would achieve the desired
objective.
The desirable objective in our case is to

improve the handling of X-ray images to
remove the doctors’ and other clients’ dissatis-
faction and problems. The essential function
can be described as giving the clients access to
the images they need, when they need them.
2. Identify conflicts between existing means

of achieving these functions within the
assumed problem boundaries.
The foremost conflict is that we cannot

guarantee delivery of the proper images, even
if the image archive is given a digital support

i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

METHODS & TOOLS

COLUMN EDITORS

Michael Muller

Lotus Development Corp.

55 Cambridge Parkway

Cambridge, MA 02142

+1-617-693-4235

fax: +1-617-693-1407

mullerm@acm.org

Finn Kensing

Computer Science

Roskilde University

P.O. Box 260

DK-4000 Roskilde

Denmark

+45-4675-7781-2548

fax: +45-4674-3072

kensing@dat.ruc.dk

and the sidebar for examples).
All three methods can be used as learning

tools, maybe even without trying them out. It
is possible to read them just to be able to for-
mulate questions on our current practice. For
instance, in what way do I approach situations
described in the methods? And what are the
pros and cons of my own thinking—struc-
tured or not—compared with the methods?

Design and Method
What is the role of methods in design? As
stated in the introduction, the answer depends
on how we regard the designers themselves.
Of course, situations occur when a systematic
and structured approach can relieve a designer
from time-consuming and difficult tasks. This
is especially the case when the purpose is
straightforward production of already
designed functions or systems. But in early
design phases and with the view of the
designer as a self-organizing system we want
to advocate the idea of methods as primarily
learning tools. The learning that takes place

can help a designer in different ways.
By learning a new method, you extend

your language and your repertoire of tools for
different design situations. Even more pow-
erful is learning a method to the level where
you can go beyond the method as stated. This
requires understanding why the different
steps in the method are performed, adapting
the method to the situation at hand, and
exchanging a technique prescribed by the
method for another one yielding a better
result. At that level of method use, methods
need not be confining or overly prescriptive.
This means that what the use of methods
really contribute to is the development of the
designer’s design ability and skills.

Another reason for using design methods,
and primarily systematic methods, is that
design work is always carried out in a social
context. The method can serve as a common
ground for more successful communication
between the stakeholders in a design process.
Support for coordination and planning are
also benefits stemming from the social use of

18 i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

M o r e M e t h o d E x a m p l e s
FUTURE WORKSHOPS can be used in short amounts of time when the intended users and stakeholders

need to clarify common problems in their current situation, create visions of what future work could be

like, and discuss how to realize the visions. Participants switch between small-group and whole-group

work in going through phases of critique, imagination, and implementation. An example of future work-

shops in software design is Kensing , F., and Madsen, K. (Generating Visions: Future Workshops and

Metaphorical Design. In Greenbaum, J., Kyng, M. (eds). Design at Work: Cooperative Design of Computer

Systems, Lawrence Erlbaum, Hillsdale, NJ, 1991, 155–168).

BRAINSTORMING is probably the best known example of a creative design method and unfortunately

also one of the most misused words in professional settings. Its proper use is a three-step method

whereby a group of participants is selected, ideas are generated without criticism or analysis, and the

results are structured to make them available for subsequent use. METHOD 635 is a variation in which six

participants get well acquainted with the problem and each write down three rough ideas for solutions.

The ideas are passed on to the next participant, who revises, extends, and modifies them. After five

rounds of passing notes, all participants have worked on all the ideas. Brainstorming is well described in

Jones, J. C. (Design Methods. 2nd ed. Van Nostrand Reinhold, New York, 1992). Method 635 is described by

Pahl and Beitz, who attribute it to Rohrbach (Pahl, G., and Beitz, W. Engineering Design: A Systematic

Approach. The Design Council, London, 1988).

Edward de Bono has presented many methods concerning general creativity and productivity. Some of

them seem clearly relevant for software design as well. A fairly well-known example is THE SIX THINKING

HATS. The idea is to make explicit different perspectives that are needed in a design process and to create

more unambiguous communication. The white hat is neutral and focused on information and data. The

red hat is about feelings and intuition. The black hat is for critical assessment. The yellow is optimistic

and positive, and the green is for creativity and growth. The blue hat is the process facilitator.

19i n t e r a c t i o n s . . . j a n u a r y + f e b r u a r y 1 9 9 9

methods. But it is important to remember
that this purpose may easily become counter-
productive in early design phases if creativity
and boundary expansion are in focus.

Methods are bearers of historical knowledge
and professional skill. Even if you do not follow
a particular method to the letter in your own
work, studying it can give valuable knowledge
on how other designers formulate their experi-
ences. To read and reflect upon a method
description—and most of all to reinvent the
underlying rationale—is a way to challenge and
develop your own views and assumptions on
design. This is best done if you try the method
at hand in a serious way. It is in the struggle
with the complexity of design situations that
the real value of a method can be reflected on.
When this happens, your assumptions are chal-
lenged and have to be re-evaluated and re-for-
mulated. Donald Schön [13] presents the idea
of a “reflective practicum” as an approach to
reach this situation.

As a consequence, the main strength of
design methods as discussed here is not in

their contribution to quality assurance or
repeatability. The idea of detailed method pre-
scriptions leading to a repeatable, measurable
and in some sense objective design processes is
sometimes advocated in our discipline. In our
view, the quality of the work in any design
process can never be better than the designers
and the design context, irrespective of which
method is used. The case studies in Löwgren
[7] provide examples of this.

A method may appear comfortable and
secure, and perhaps seem to take part of the
responsibility off your shoulders. Unfortunately,
this security is not guaranteed. Sooner or later,
you will find yourself in a situation in which the
method is inadequate. A better mindset is to
aim for being always prepared to act, by con-
stantly developing your creative and analytical
skills, assessment skills and values, rationality
and communicativity, expressive and composi-
tional skills, and knowledge of technology and
of use situations. In this ongoing process, design
methods are wielded as one type of tools among
many others.

Another suggestion from de Bono is the RANDOM INPUT method. The problem, or creative focus, where

new ideas are needed is simply juxtaposed with a randomly selected word. The new associations that

emerge from the surprising combination can lead to new and useful ideas. Both the six thinking hats and

random input are described in de Bono, E. (Serious Creativity: Using the Power of Lateral Thinking To

Create New Ideas. Fontana, London, 1993).

ARGUMENTATIVE TECHNIQUES were originally conceived as consequences of viewing design as a negoti-

ation, where there are no right answers but rather a number of more or less valuable solutions supported

by more or less well-founded arguments. The issue-based information system (IBIS) notation is based on

issues, positions, and arguments. Its aim was to make design more democratic by explicating and docu-

menting the negotiations behind design decisions. Horst Rittel was the main proponent of this view of

design and the originator of IBIS in the 1960s. The hypertext adaptation gIbis is described in Conklin, J.,

and Begeman, M. (gIbis: A Hypertext Tool for Policy Discussion. ACM Transactions on Office Information

Systems 6,4: 303–331).

More recent examples of argumentative techniques have largely downplayed the ideological aspects of

argumentative design to focus instead on documenting the exploration of different ideas and solution

alternatives during a design process. The questions, options, criteria (QOC) notation is a well-known

example, whereby design decisions are described in terms of Questions, Options for answering the ques-

tions, and Criteria by which to assess all the proposed options. QOC clusters can be joined as options

spawn new questions, and the resulting network becomes a map of the design space traversed in the

design process. The notation and underlying ideas are introduced in Maclean, A. et al. [Questions,

Options, and Criteria: Elements of Design Space Analysis. Human-Computer Interaction 6, 3–4 (1991):

201–250].

PERMISSION TO MAKE DIGITAL OR

HARD COPIES OF ALL OR PART OF THIS

WORK FOR PERSONAL OR CLASSROOM

USE IS GRANTED WITHOUT FEE

PROVIDED THAT COPIES ARE NOT

MADE OR DISTRIBUTED FOR PROFIT OR

COMMERCIAL ADVANTAGE AND THAT

COPIES BEAR THIS NOTICE AND THE

FULL CITATION ON THE FIRST PAGE.

TO COPY OTHERWISE, TO REPUBLISH,

TO POST ON SERVERS OR TO REDIS-

TRIBUTE TO LISTS, REQUIRES PRIOR

SPECIFIC PERMISSION AND/OR A FEE.

© ACM 1072-5220/99/0100 $5.00

Acknowledgments
The article is based on a chapter from
Löwgren and Stolterman [8]. The X-ray
image example is purely fictitious and used
only for purposes of illustration.

References
1. Butler, K. Usability Engineering Turns 10.

interactions, iii.1, (January 1996), 59–75.

2. Cross, N. Developments in Design Methodology. Wiley,

Chichester, UK, 1984.

3. de Bono, E. Serious Creativity: Using the Power of

Lateral Thinking To Create New Ideas. Fontana,

London, 1993.

4. Jones, J. C. Design Methods. 2nd ed. Van Nostrand

Reinhold, New York, 1992.

5. Kyng, M. Scandinavian Design: Users in Product

Development. In Proceedings of CHI’94: Human Factors

in Computing Systems. ACM Press, New York, 1994,

3–9.

6. Landqvist, J. Vilda idéer och djuplodande analys:

Om designmetodikens grunder. (Crazy Ideas and

Penetrating Analysis: On the Foundations of Design

Methodology.) Carlsson, Stockholm, 1994. In Swedish.

7. Löwgren, J. Design for Use Quality in Professional

Software Development. In Proceedings of the Second

Conference of the European Academy of Design

(Stockholm, April 1997). See http://www.svid.se/ead-

programme.htm.

8. Löwgren, J., Stolterman, E. Design av informationste-

knologi: Materialet utan egenskaper. (Designing

Information Technology: The Material without

Properties.) Studentlitteratur, Lund, Sweden, 1998. In

Swedish.

9. Lundell, J., Williams, D. Integrating QFD into

Software Development: A Case Study. In Proceedings of

the Fifth International Conference on Human-Computer

Interaction (HCI International ’93), North-Holland,

Amsterdam, 404–409.

10. Margolin, V., ed. Design Discourse: History, Theory,

Criticism. University of Chicago Press, Chicago, 1989.

11. Margolin, V., Buchanan, R., eds. The Idea of Design.

MIT Press, Cambridge, MA, 1995.

12. Rasmussen, J., Goodstein, L. Information

Technology and Work. In Helander, M., (ed.)

Handbook of Human-Computer Interaction, Elsevier,

Amsterdam, 175–201.

13. Schön, D. Educating the Reflective Practitioner.

Jossey-Bass Publishers, San Francisco, 1987.

14. Winograd, T., Bennett, J., De Young, L., and

Hartfield, B., eds. Bringing Design to Software. ACM

Press, New York, 1996.

PSST.
have you heard?

ACM has a digital library.

The Ultimate online resource
www . a cm . o r g /d l

