
 1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PUI 2001 Orlando, FL USA
Copyright 2001 ACM 1-58113-448-7-11/14/01 ...$5.00.

Design Issues for Vision-based Computer Interaction
Systems

Rick Kjeldsen Jacob Hartman
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

(914) 784-7558

fcmk, jhartman@us.ibm.com

ABSTRACT
Computer Vision and other direct sensing technologies have
progressed to the point where we can detect many aspects of a
user’s activity reliably and in real time. Simply recognizing the
activity is not enough, however. If perceptual interaction is going
to become a part of the user interface, we must turn our attention
to the tasks we wish to perform and methods to effectively
perform them.

This paper attempts to further our understanding of vision-based
interaction by looking at the steps involved in building practical
systems, giving examples from several existing systems. We
classify the types of tasks well suited to this type of interaction as
pointing, control or selection, and discuss interaction techniques
for each class. We address the factors affecting the selection of
the control action, and various types of control signals that can be
extracted from visual input. We present our design for widgets to
perform different types of tasks, and techniques, similar to those
used with established user interface devices, to give the user the
type of control they need to perform the task well. We look at
ways to combine individual widgets into Visual Interfaces that
allow the user to perform these tasks both concurrently and
sequentially.

Keywords
Perceptual User Interfaces, Vision-based User Interfaces, User
Interface Design, Head and Hand Gesture Recognition.

1. INTRODUCTION
In recent years there has been increasing interest in user interfaces
which take advantage of cameras and computer vision technology
[1][7][11]. Unfortunately, most work has focused on either
recognition of human action, deferring any consideration of how
the model is to be used, or of developing interaction techniques in
isolation, with little consideration of how the technique may be
generalized to other tasks. Much more needs be considered to
develop useful interactive systems.

In this paper we will attempt to step back and consider the
problem of Vision-Based Computer Interaction (VB-CI) from a
wider perspective. The ideas presented here are based on our
experience in building several different interactive systems
including ones for facial pointing [4] and other head gestures [5],
various tools for disabled users such as the TouchFree Switch
[13], hand gesture recognition systems [3], finger pointing and
selection with projected displays [6] and numerous less successful
prototypes. The applied nature of our work has forced us to
address the entire range of issues involved in creating practical
tools.

By VB-CI we are referring to technology which uses a camera to
sense the user’s intentional actions and then responds in some
way. In a fully functional user interface VB-CI would be only
one component of a larger multi-modal user interface, perhaps
playing a role analogous to the pointer in the UIs of today by
providing spatial and manipulation information.

We envision a VB-CI Interface, or VI, as being composed of
individual widgets, similar to how a current GUI is composed of
scroll bars, buttons, menus and the like. Each widget provides a
basic type of interaction, such as triggering an event or controlling
the value of a parameter. A widget may or may not have a spatial
location or a representation on the screen. Just as with current
interfaces, when the task changes the set of active widgets
changes as well.

This paper will address various aspects of the design of a VI. It
will first consider general issues such as the interaction styles
suited for direct sensing interaction. Vision-based user
interactions have different strengths and weaknesses than
traditional input devices. These differences must be taken into
account when considering how they should be used and what the
resulting interface will look like.

Next, we will examine the problem of designing and building
individual interface widgets; the atomic actions like pointing and
scrolling that make up a user interface. We will consider some of
the constraints on the control movement imposed by human
factors, the types of control signal that can be derived from those
movements, and how those signals can be used to perform the
desired task.

Finally we will address how these widgets can be combined into a
complete VI, and how a VI can be integrated with traditional
applications and control mechanisms.

 2

We hope that this discussion will provide some insight into what
tasks are well suited for direct sensing interaction, the range of
ways tasks these tasks can be performed, and how these tools can
be provided to the user in a practical package.

The discussion will be in the context of vision-based user
interface techniques, but much of what is said applies to
interactions using other “direct sensing” techniques, such as
sensor equipped clothing, active sensors like sonar and IR, etc.

It is important to keep in mind that our focus is on Interaction
rather than Recognition. In other words, we are not interested in
modeling human behavior or even recognizing it beyond what is
needed to control some aspect of a computers activity. In some
cases, an explicit model of the user or their activity may be the
best approach, but in many cases a more direct mapping from
some image feature to the control task is appropriate.

2. INTERFACE DESIGN
2.1 Interface Style
A traditional pointer can sense action along two dimensions, and
even this limited expressiveness is not fully utilized. In the nearly
ubiquitous point and click interface, the sensed activity is only
used to identify a location on another 2D plane, the screen. Using
that location and a combination of clicks, all types of tasks are
performed.

With VB-CI we have the potential to extract a control signal with
many more degrees of freedom, so it does not make sense to limit
the interpretation to a screen location. Of course, it is possible to
translate the control signal into a location and for some tasks that
may be the best way to use it. For tasks whose primary goal is
selection or parameter control, however, it often makes more
sense to apply the sensor data directly to the task. For example,
scrolling speed could depend on the angle of the user’s face as it
aims above or below the display window. This interaction saves
the screen clutter required by scroll bars, and saves the user the
distraction of having to place a pointer in a small rectangle to
scroll.

When taking advantage of the expressiveness of gesture-based
interaction, it is important not to go too far. As an extreme
example consider an interaction based on a complex sign
language. This would be more expressive than most tasks require.
There would be a large penalty in terms of the effort required on
the part of the user for learning. There would likely be problems
with remembering the signs to perform for rarely used tasks. The
recognition of such a language would require significant
computing resources.

A great deal of knowledge of human computer interaction is
embodied in the form of current graphical user interfaces. We
therefore strive for a middle ground, where tasks which have
proven valuable in current interfaces are performed using
interaction styles based on a more flexible direct sensing
techniques.

2.2 Interaction Tasks
In order to explore the ways in which gesture-based interaction
can be used in a user interface, we have clustered tasks by their
purpose. In previous work [5], we identified four categories of
task well suited for head gesture:

• Pointing: accurately identifying an arbitrary location on the
display with high resolution. This can be used to control a
traditional cursor, or to position some other object on the
screen. In addition to the familiar direct manipulation tasks,
pointing can also be used as an intermediate step for higher-
level interpretation.

• Parameter Control: determining the value of some
continuous parameter. A common example is to control the
location in a file to be displayed (scrolling), but numerous
other applications exist such as setting the pitch or duration
of a note.

• Spatial Selection: identifying one of several spatially
distributed alternatives. For example, you may tilt your head
left to select the left button in a dialog box or reach out your
hand to touch a target floating off your right shoulder. The
alternatives may be distributed in image, user or screen
space.

• Symbolic Selection: identifying one of several alternatives
by non-spatial means. The most obvious example is to shake
your head for yes or no. The result could be a simple binary
signal, or could use a more complex alphabet.

When we consider hand, as well as head gestures, the fourth
category, Symbolic Selection, can be expanded to include a wide
range of symbolic activity. This topic is beyond the scope of the
current discussion, but the first three categories will form a good
basis for our examination of VB-CI in general.

2.3 Context
With any complex interface there are likely to be far more tasks
that may be performed than individual control actions. This
creates an ambiguity as to the user’s intention, which must be
resolved by contextual information.

A strong sense of context can also help avoid what is often called
the Midas Touch Problem, where everything the user does is
interpreted as an interaction. In traditional user interfaces, the
user can simply not touch an interface device when they don’t
want to use it. With direct sensing, however, the user’s actions
could potentially always be “active”. Context can tell us when to
attend to the actions and when to ignore them.

In current GUIs, context is provided by the screen location of the
pointer. For example, a mouse down event in a scroll bar guides
the interpretation of a subsequent drag as being intended to
control the location within a file. A mouse down event in title bar
implies a subsequent mouse drag should control the location of a
window. A click in an inappropriate location can be ignored.

In VB-CI, it is also possible to use the spatial location of the
interaction to provide context. We refer to these interactions as
“target-based”, implying there is some spatially located target
where the action must be performed. As an example, a user may
have to place their hand into a rectangular region beside them and
then move it up and down in order to control a parameter value,
creating a widget similar to a scroll bar.

VB-CI widgets, however, can often be spatially independent. For
example, a selection task such as selecting the leftmost dialog
button may be implemented by having the user tip their head in
that direction. In this case, the location of the head does not
matter, only its motion, and the context must be provided by some
other means, generally by the state of the application. .

 3

One can also envision an interaction where the context is provided
by the current state of the user. For example, the shape of a hand
during a motion may control what task the motion performs.

2.4 Image Space and Screen Space.
One concept that must be considered when thinking about a VB-
CI is the reference system that is being used for spatial reasoning
at any point in time. When we say a target is somewhere in space
we have to be clear about what space that is. If it is screen space,
we have to map the user’s actions to the screen before
interpretation. We can stay in image space, so that the target is
always at the e.g. left of the camera’s field of view, or translate to
user space, so that the target is always some distance to the left of
the user.

Traditional pointing devices always map to a location in screen
space. Gesture can also be mapped to screen space, giving a
relatively traditional point and click style interface, but that is not
always needed. Direct interpretation of the action in user or
image space often provides a simpler solution in terms of both the
computation involved, and the user’s perception as well.

Keep in mind that the transformations between these spaces may
be very simple. In the case when a camera is observing a user’s
hand in front of a projected display, image space and screen space
can be essentially the same. If the camera is observing the user
and they are relatively still, image space and user space are very
similar. This implies that in some circumstances we can reason
directly in image space and so avoid the complexity of
transforming from one space to another.

3. DESIGNING WIDGETS
We will now turn our attention to how individual VB-CI widgets
should be designed. Three aspects must be considered: the
Control Action used, that is the motion the user makes to affect
control; the Control Signal to be used, meaning the signal
extracted from the control movement that will be actually used to
control the task; and the Transfer Function. This is the
algorithm by which the control signal is converted to the task.

3.1 Control Action
The choice of a control movement for a task is often more art than
science. It is influenced, however, by several constraints
including:

• Intuition: How natural is the motion for the task? Is it easy
to remember?

• Motion: Does the user have sufficient range of motion to
provide the need resolution?

• Stability: Can the user perform the movement with sufficient
stability to accurately control the task?

• Comfort: Can the user comfortably perform the task for the
length of time, or the number of repetitions required?

• Multiplex: Can the user perform the motion while doing
everything else they need do at the same time? For example,
can they comfortably see the feedback the system provides?

• Visibility: Can the system see the movement adequately?

• Midas: The action should be unique enough that it will not
be accidentally performed by the user, thus avoiding the
“Midas Touch” problem.

With these constraints in mind, consider what might be good
control actions for each of the task types in Section 2.1:

3.1.1 Pointing Actions
The most intuitive pointing actions include aiming some body
part, such as a nose or a finger, at the desired location. While it is
possible to map any 2D motion, such as a hand on a desk, to a
screen location, when you do often much of the advantage of
gestural pointing over a device such as mouse disappears. A
stable and responsive pointer motion is essential. When a
pointing task requires the user to repeat the action often or for
long periods, the motion must be comfortable and generally the
hand should have some type of support.

If the head is used, it should always be balanced comfortably over
the neck and not tipped at an awkward angle. In an early head
pointing system, we tried left/right head tilt because the motion is
easy to recognize. Unfortunately, the repeated and extended
tilting required quickly became uncomfortable. The lesson:
excursions in tilt should be limited in amplitude, duration and
frequency because in tilt the head is not balanced over the spine,
making the neck muscles work to hold it up.

A natural choice for head-based pointing is facial aiming.
Accurate aiming is intuitive as people aim their faces for social
reasons as well as to support acute vision and hearing. As the
feedback is strictly visual, the multiplex constraint imposed by the
need to watch the pointer is important to address.

3.1.2 Parameter Control Actions
Parameter Control tasks are generally one-dimensional and the
interactions short, which can make finding an appropriate control
motion easier than with pointing. The intuition of the motion
should correspond to the specific task, such as up for increasing
values, down for decreasing. Stability can be an issue to achieve
good accuracy.

For a task like facial scrolling, a natural choice is again based on
facial aiming, where the user aims their face above, below or to
the side of the document to be scrolled.

3.1.3 Selection Actions
Spatial Selection tasks are generally very brief, making stability
and comfort even less of an issue. This brevity can make
multiplex constraints an issue, however, as the user may not want
to move their hands from their current task (e.g. typing) for such a
brief interaction. For this reason, facial gesture can be a good
alternative for many selection tasks, the user aims their face in the
direction of the selection. The range of motion need only be large
enough for the system to unambiguously distinguish the
alternatives. Depending on the number of alternatives the motion
can be very small.

As an example, consider using facial selection to select one of
buttons in a dialog box. A natural interaction is to have the user
aim their face left or right to highlight the desired button, then tip
their head down to select it. The down movement is important to
avoid an inadvertent selection when the user paused to think about
their response.

3.2 Control Signal
Once a control action is determined, a signal must be extracted
from the image sequence that captures the important aspects it.
This signal is then used to drive the desired system response. This

 4

paper will not attempt to classify all the different types of control
signal that could be used. The state of the art in gesture
recognition is changing very fast and much of what we say would
quickly be outdated. Instead, we will try to classify control
signals along general dimensions.

3.2.1 Image- versus model-based control signals
Much work in the recognition of human action comes from the
computer vision community where building accurate internal
models of the world is a strong tradition. Once a model is built,
some parameter of that model can be used as the control signal.

The model-based approach often extracts more information about
the user than necessary, implying it is more computationally
expensive than necessary. In addition, current techniques for
building 3D models are often noisy and unreliable with respect to
the demands of real time interaction [12].

Some of these problems will fade with time, but the advantage of
decreased computational complexity should not be
underestimated. Higher frame rates contribute directly to better
usability; moreover, camera-based interactions are likely to be
used in concert with other resource intensive applications such as
voice recognition as part of a multi-modal user interface. Even
with the faster machines several years in the future, users will
want their computing resources available for the target task, not
squandered by the interface.

For real-time interactive systems, the simpler image-based
approach is often preferable. Here the image sequence is
examined for a signal that tracks the control movement, and then
mapped directly to the task.

Image-based control signals fall into two categories, position-
based and value-based. Value-based signals track the value of
some image parameter at a location. The signal is chosen such
that its value changes distinctively when the user performs the
control action. For example, you might compute a color-
histogram of a small region of the image to detect when the user
“touches” it. This approach can work well for detecting discrete
events, but since these signals generally do not change
monotonically with the user’s actions, it is difficult to use them
for parameter control type tasks.

More interesting are the position-based signals, where some
image feature is tracked within the image. We refer to these as
2D control signals. These signals generally do vary
monotonically with the user’s actions, making them suited for
control tasks. They can also be interpreted with some decision
function to give a selection task.

3.2.2 Absolute Versus Relative Control Signals
Many position-based control signals can be considered as
belonging to one of two categories:

• Absolute signals, which record the state of the user with
respect to some fixed reference.

• Relative signals, which record the state of the user with
respect to their previous state.

These can correspond to location and velocity, or to orientation
angle and angular velocity, or to nearly any other image feature
we may wish to extract.

Relative signals are difficult to use in situations where there is a
limited range of motion or where there must be some relationship
between a user’s position and the state of the system she is trying
to control. For example, with facial aiming the need for the user
to look at the current pointer location as they control it makes
relative signals impractical. Absolute signals have their own set
of complications. A reference state must be determined, then
either remain fixed, or be tracked during the interaction. For
example, depending on the task we may want to use the location
of the hand within the image, with respect to some background
object, or with respect to the user’s body. In the later two cases
the location of the reference point must be tracked, in addition to
the location of the hand.

An example from our facial pointing system will illustrate the
discussion. Because of the importance of real time response, we
chose to use an image-based control signal. If the camera is
looking at the user approximately head-on, small 3D head rotation
appears as 2D translation of the facial image (with increasing
amounts of image warping). The expected range of facial image
motion can be computed to within small error using the size of the
facial image and typical head dimensions. This allows the
location of the facial image within its range of motion to be used
as a proxy for head rotation.

Using image-based control signals allows us to ignore several
difficult problems we would have to address in order to build a
model. For example, we estimate the range of motion of the face
based only on it's size. We need not care if the apparent size is
due to the distance of the user from the camera, the properties of
the lens, or the resolution of the image. What is important is the
relative position of the user's face within its range of motion,
giving us an absolute control signal.

We track the face using cross-correlation: matching a face
template within a small search region in each frame. The average
of the absolute value of the difference between the gray level of
corresponding pixels seems to give better stability than using a
squared pixel difference.

The search region is computed using the maximum reasonable
head speed during pointing, determined empirically to be about 3
facial diameters per second, and the instantaneous frame rate. The
search region is expanded on two sides, if needed, to ensure that it
includes the center of the range of motion. This gives the user a
simple recovery mechanism when the system looses their face -
orienting their face back to the position used in training (looking
at the center of the screen) usually results in the face being found
immediately.

This relatively simple template-matching tracker has proven
robust under a wide range of circumstances. In good lighting, we
can track the face through about a 60-degree arc horizontally (30
degrees on either side of the camera), and through about 40-
degree arc vertically. Tracking speed is excellent. At 160x120
pixel resolution we can track the user’s face at nearly 30 frames
per second, using only a small fraction of the CPU1. With a well-
designed transfer function, this resolution is ample for smooth and
accurate pointer movement.

1All performance numbers were obtained on a 700 MHz Intel
processor running Windows 2000. Code was written entirely in
C++ using only basic optimization techniques.

 5

h

B

PRT

D

C
a

m
era

Figure 1: Configuration of user and screen for facial

pointing.

Po
in

te
r R

at
e

Input Signal (F)

Rmax

F max
Figure 2: Sigmoid Transfer Function

3.3 Transfer Function
The final step in building a widget is to map the control signal to
the task. For pointing and parameter control tasks the transfer
function is generally a mapping from one continuous value to
another. For selection tasks, it becomes a decision function on the
control signal.

3.3.1 Transfer Functions for Parameter Control
Tasks
A transfer function for parameter control tasks needs to do at least
three things, reduce noise and error in the sensed signal,
compensate for low control signal resolution, and provide the user
with a pleasing and usable response. The jobs can be addressed
independently, or combined into a single function, but all aspects
must be considered. Noise reduction is often addressed in current
“gesture recognition” work by filtering approaches [11]. Low
sensing resolution is generally handled in the same step. Issues of
usability are only rarely addressed in the PUI community.
Fortunately, we can draw inspiration from the traditional HCI
community, where these issues have been addressed for some
time [9].

3.3.2 Rate vs. Position Control
The value of a parameter, such as the location of the pointer on
the screen can be controlled using either its change (motion)
relative to a previous value (rate control) or by setting its absolute
value with respect to some reference (position control). Consider
two examples. They use two different absolute control signals in
order to make them more realistic.

Absolute Signals controlling Position (AP): The location of the
facial image within a box positions the pointer on the screen
correspondingly.

Absolute Signals controlling Rate (AR): The rotation of the face
from straight ahead determines the speed of the pointer in the
corresponding direction.

True nose pointing, in which the pointer is positioned where a
really long nose would touch the screen, is an instance of AP

where the mapping function from orientation to screen location
takes into account the 3D geometry of the environment.

Depending on the task and the desired interaction style, either rate
or position control may be applicable. The following will discuss
our development of the transfer function for a face-tracking
pointer in order to make some of the issues more concrete.

For what follows, C refers to the control signal, which can be
either the angle of the face, θ , or the displacement D of the facial
image within its range of motion as described in the previous
section. P refers to the location of a pointer on the screen (see
Figure 1). Every frame the transfer function will convert C to a
new P.

In our first attempts to build a transfer function for a facial
pointer, we mapped C by various simple transforms to either an
absolute pointer position T (AP interaction) or a pointer motion R
(AR interaction). The AP version required significant filtering of
T to compensate for noise in and coarse resolution of C. While
this approach worked, it did not give a pleasing and responsive
pointer motion, which had a big impact on usability and user
satisfaction.

With the AR version, we were able to tune the transfer function
between C and R to improve pointer dynamics. This gave a
transfer function which was suitable for various other body parts,
e.g. hand tracking, but with face tracking we encountered a
problem. Under common circumstances, the face must be aimed
away from the pointer to get the desired motion, making viewing
the pointer uncomfortable. For example with P on the far left of
the screen, the user has to aim their face straight ahead to keep it
still and look at P out of the corner of their eyes. To move P
slightly right they must aim their face further away from P,
making matters worse. We were able to compensate by applying
a bias to the facial offset calculation, such that C=0 when the
user’s face aimed at P. Unfortunately, this made the algorithm
cumbersome to work with, limiting further development.

This, however, lead us to a hybrid rate and position control
scheme, where C is translated to a target screen location T, and the
distance F between P and T determines R, which is assumed to be
in the direction of T. The nature of the mapping from F = T − P
to R, more than anything else, impacts usability, and here much
can be learned from similar work in the HCI community such as
[9]. Our best mapping to date is from a sigmoidal relationship

R = Rmax

1 + e− F−k
l

 6

such that when T is near P large head movements are needed to
move it, making fine positioning easier. When T − P is large,
R j T − P so that P tracks T very closely, making for rapid long
distance moves. Importantly, a sigmoid is easy to tune by

adjusting knee j, slope l and the maximum output value Rmax.

The main advantage of this hybrid algorithm is that it allows us to
separate issues specific to sensing the control signal from issues of
pointer dynamics and usability. This has made it easier for us to
both tune the system for good usability by adjusting pointer
dynamics, and also to make progress on the remaining problems
such as compensating dynamically for changes in user / screen
geometry.

Pure AR interaction does have its place. It is well suited for input
signals that do not map well to a screen location, making it
suitable for use with a wider range of human motion. It is also
easier to adapt for use with relative control signals. For facial
pointing, however, the hybrid method is easier to work with.

With respect to the preceding discussion, then, we can examine
how this algorithm addresses the various tasks of a transfer
function. The resolution mismatch is handled by the fact that we
are controlling the rate of the pointer, not its location. Low
amplitude noise is addressed by the low “gain” between small
control signals and pointer motion (the left of figure 2). High
amplitude noise still gets through. This generally does not present
a problem, but if it did in a particular application, it could likely
be handled by specific filters in the computation of T.

This algorithm addresses several usability issues. It addresses the
multiplex problem of having to look at the cursor with the
position control component (the fixed computation of T). It also
addresses an inherent conflict between providing the user with
precise control for fine positioning and at the same time fast long
traversals using a highly non-linear gain between F and R.

One more aspect of the hybrid transfer function should be pointed
out. There is another degree of flexibility by which this algorithm
can be adjusted to the needs of the user and the task. If the
horizontal and vertical components of R are computed
independently, the pointer will show a mild affinity to track
horizontal or vertical lines. This comes about because the two
components of C fall at different points of the sigmoid. This
affinity can be helpful when the pointer is being used primarily as

a selection device, but when the user desires more accurate free
form drawing, it can easily be disabled by computing R using the
combined vector length of C.

3.3.3 “Transfer Functions” for Selection Tasks.
Transfer functions for selection tasks are less of the form of a
numerical mapping and more of the form of a decision function.

For image-value-based control signals (see Section 3.2.1) the
decision function is generally of the form: “has C changed
sufficiently in this region to justify a decision”. This decision can
be based on many types of comparison. One which we have had
good results with is color histogram matching. Here the color
histogram of the desired image region is matched to the histogram
of either the background to determine when sufficient change has
occurred, or to the foreground, obtained through training, to
determine when the desired action has been performed. The
distance threshold gives a simple knob for the end user to adjust to
obtain the desired sensitivity. The histograms are structured to
remove some of the dependence on lighting, generally by using
HIS color space, and quantizing the Intensity dimension very
coarsely. This is the approach taken in the TouchFree Switch
[13].

Position-based spatial selection tasks often require C to be first
converted to a space more intuitive for the user than the original
image coordinate system before being operated on with a decision
function. The conversion can be done using simple coordinate
system transformations, or by complex transfer functions like
those described in Section 3.3. After the transform, however, the
choice of decision function depends heavily on task and user
constraints.

In a projection display interaction system we have developed [6],
the user’s fingertip is located in an image of a projected display
(Fig. 3a) by matching a fingertip template in a frame-to-frame
difference image (Fig 3b & 3c). The trajectory of the fingertip is
then examined for patterns that indicate the user reached out,
touched the active area (button), paused, and then retracted. This
decision function proved to be very robust in the target domain,
where users performed isolated selection interactions, but would
fail in an environment where sequential selections were needed
with no retraction in between. This illustrates how the decision
function must be tightly tuned to the user’s actions in the given
environment.

Figure 3: a) Camera view of user interacting with projected button; b) image difference data; c) overlay of search region

(square), button active area (circle), and the fingertip template shown at the pointing location.

a b c

 7

4. APPLICATION ISSUES
Once we have a library of widgets we must address how they are
combined into sets that allow the user to perform all the tasks
required by an application at any point in time. We must be able
to:
• Create collections of widgets (configurations) to perform

application level tasks.

• Switch between configurations to accommodate changes in
the application's context.

• Allow the user to customize the interface to their desired
motion patterns.

• Adapt, either automatically or with user assistance, to the
current imaging conditions.

• Easily integrate VIs into a new or existing application
without any knowledge of computer vision.

We have just begun to explore these issues, but already some
important points have become apparent

4.1 Configuration Sets
Like a standard GUI, a VI must be able to handle context changes
in the application level task. We handle this by activating the
appropriate configuration set at the request of the application. For
instance, when a yes/no dialog appears, an application may
temporarily replace a face-tracking configuration with a symbolic
widget that interprets nods or shakes of the head. In this way,
visual interface widgets can be combined both concurrently and
sequentially to provide more complex interactions.

One problem that must be addressed in any practical system is
that the user be kept aware of which widgets or configuration sets
are active any time. One solution is for each widget to have an
on-screen representation drawn over the video stream in a display
window. This approach works well when the camera view is
looking straight back at the user such that the display appears like
a mirror. In other circumstances, however, the camera is at an
odd angle, and the display is disorienting to the user. In this case
we have found it very useful to be able to project a target or other
widget representation directly into the environment for the user to
interact with (see [6]).

Creating configurations of widgets with completely independent
control signals, such as combining selection targets with facial
pointing, is relatively straightforward. There is little conflict
between widgets, and the user can easily understand what they
need do to activate one widget rather than another.

When the widgets share a control signal, however, the situation
becomes more complicated. A good example comes from a
system where we tried to combine facial pointing with an on-
screen keyboard where the characters were selected with left /
right facial motion, and typed with a vertical movement, up for
upper case, down for lower case. Both the system and the user
needed to clearly differentiate when the facial motion was to be
used for pointing or typing.

Our solution was to give one of the widgets a spatial trigger. The
keyboard only became active when the pointer reached the top of
the screen. Then the keyboard was displayed and the keyboard
widget took over. We are in the process of formalizing a method
for this type of control signal sharing between widgets.

In order that widgets in the same configuration be able to share
control signals, widgets must not be built as single, monolithic
objects. If there are two separate widgets driven by a face-
tracking algorithm (such as the pointer driver and on-screen
keyboard), there should be no need to run the tracking algorithm
twice. We have begun to explore how widgets can be divided
vertically to facilitate this type of sharing.

To handle these related design issues, namely the multi-staged
processing involved in a widget and the one-to-many relationship
that may occur between control signal detection algorithms and
widgets, we build widgets from "stackable" layers of components.
A component is an object that handles a single processing task
and passes the resulting control signals to the component(s) in the
next layer. Expanding our previous example, a component would
encapsulate the face-tracking algorithm, inputting the raw video
stream and outputting the position of the user's face within the
image. These face position signals would subsequently become
the inputs to two separate chains of components, one of which
would make up the pointer driver and the other comprising the on-
screen keyboard.

This hierarchical component architecture also has the advantage
of making the widgets very versatile. A developer (or even a
user) can create a new widget by mixing and matching existing
components. For instance, a face tracking widget that drives the
cursor can be altered to drive scroll bars simply by swapping in a
component that sends scroll messages rather than mouse
messages.

4.2 Training and Personalization
Unlike a typical physical control device (i.e., a mouse or
keyboard), the vision-based interface must derive its control
signals from a noisy, high-bandwidth input medium. Equally
important, every person has somewhat different movement
patterns and preferences.

Differences between users tend to be filtered out by physical user
interface hardware. If someone has difficulty using their right
hand, they can move the mouse to the other side of the keyboard
without the computer caring. With direct sensing interfaces,
however, the differences in how people move must be handled
explicitly by the software.

Because much of our work thus far has been focused on the
special needs community, where the ranges of motion and levels
of control differ significantly among these users, we have been
forced to address this issue in its most extreme form.

To address inter-personal variation, personalization and training
of a VI become critical. We allow two stages of personalization.
At the high end, the user can move widgets and customize their
response, even changing the widget type from a selection pallet if
needed. This type of configuration is not something that should
have to be performed every session, or by every user, but in our
experience having this type of flexibility is important I achieving
the potential of the system.

After a user personalizes her interface configuration, a training
step is often required, where the user shows the widget what type
of action they will perform so that it can tune its recognition
procedure. Completely automatic training is desirable but is often
difficult and unreliable in the current state of the art. In our
experience, manual training can be made sufficiently painless --
often reduced to simply pressing one or two keys (or the

 8

equivalent) at the beginning of a session – that fully automated
training is not necessary for usable systems.

5. CONCLUSION
This paper has endeavored to outline the space of vision-based
computer interaction, identifying various dimensions along which
vision-based interactions can be built. We have classified the
types of tasks which seem to be well suited to gesture-based
interaction into the categories of Pointing, Parameter Control and
Selection, leaving aside Symbolic interpretations for now. We
described the design of widgets to perform each type of task,
starting with the choice of control movement, then the extraction
of control signals from the visual input, classifying them as
Absolute or Relative. We described transfer functions for the
various types of tasks, including Position and Rate control
functions for parameter control tasks, and decision functions for
selection tasks. Finally, we addressed how to combine widgets
with each other into sets that can be enabled and disabled to suit
the needs of the application. Along the way, we discussed the
ways in which gestural interaction differs from traditional user
interfaces, and gave examples from real systems.

We hope this will provide the beginnings of a framework for a
more rigorous analysis of gestural interaction systems. We can
now begin to see the parts of the solution space that have and have
not been explored, and to identify promising untried interaction
types. We will also be using this analysis to design more formal
user studies that can be used to quantify the differences between
the various approaches.

6. REFERENCES
[1] Communications of the ACM, Vol 43. No. 3, March 2000,

M. Turk ed.

[2] Crowley, J., Coutaz, J., and Berard, F., "Things that See:
Machine Perception for Human Computer Interaction",
Communications of the A.C.M., Vol 43, No. 3, pp 54-64,
March 2000

[3] Kjeldsen, F., “Visual Recognition of Hand Gesture as a
Practical Interface Modality,” PhD Dissertation, Columbia
University, 1997

[4] Kjeldsen, R., “Facial Pointing”, presented at the 4th
International Workshop on Gesture and Sign Language based
Human-Computer Interaction (Gesture Workshop 2001),
proceedings forthcoming

[5] Kjeldsen, R., “Head Gestures for Computer Control”, in the
Proceedings of the Workshop on Recognition And Tracking
of Face and Gesture – Real Time Systems (RATFG-RTS),
Vancouver, BC, Canada, July 2001

[6] Pinhanez, C., et.al., “Transforming Surfaces Into Touch-
Screens”, submitted to CHI 2001 (system demonstrated in
the Emerging Technology section of SIGGRAPH ’01, Los
Angeles, CA)

[7] Proceedings of the Fourth International Conference on
Automatic Face and Gesture Recognition, 28-30 March,
2000, Grenoble, France. IEEE Computer Society Order
Number PR00580

[8] Proceedings of the 1998 Workshop on Perceptual User
Interfaces (PUI ‘98), San Francisco, CA, Nov. 1998, M. Turk
editor

[9] Rutledge, J. and Selker, T., Force-to-Motion Functions for
Pointing, in the Proceedings of the IFIP TC 13 Third
International Conference on Human-Computer Interaction,
August 1990 (Interact ’90)

[10] Toyama, K., “Look, Ma - No Hands! Hands-Free Cursor
Control with Real-Time 3D Face Tracking” in [8].

[11] Wu, Y. and Huang, T., “Vision-based gesture recognition: A
review” in Lecture Notes in Artificial Intelligence V1739
1999

[12] Wu, Y. and Toyama, K., "Wide-Range, Person- and
Illumination-Insensitive Head Orientation Estimation", in
[7].

[13] TouchFree Switch, a camera-based switch for physically
disabled users, released by Edmark. See
http://www.edmark.com/prod/tfs/

