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ABSTRACT 
Computer Vision and other direct sensing technologies have 
progressed to the point where we can detect many aspects of a 
user’s activity reliably and in real time.  Simply recognizing the 
activity is not enough, however.  If perceptual interaction is going 
to become a part of the user interface, we must turn our attention 
to the tasks we wish to perform and methods to effectively 
perform them.   

This paper attempts to further our understanding of vision-based 
interaction by looking at the steps involved in building practical 
systems, giving examples from several existing systems.   We 
classify the types of tasks well suited to this type of interaction as 
pointing, control or selection, and discuss interaction techniques 
for each class.  We address the factors affecting the selection of 
the control action, and various types of control signals that can be 
extracted from visual input.  We present our design for widgets to 
perform different types of tasks, and techniques, similar to those 
used with established user interface devices, to give the user the 
type of control they need to perform the task well. We look at 
ways to combine individual widgets into Visual Interfaces that 
allow the user to perform these tasks both concurrently and 
sequentially. 
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1. INTRODUCTION 
In recent years there has been increasing interest in user interfaces 
which take advantage of cameras and computer vision technology 
[1][7][11].  Unfortunately, most work has focused on either 
recognition of human action, deferring any consideration of how 
the model is to be used, or of developing interaction techniques in 
isolation, with little consideration of how the technique may be 
generalized to other tasks.  Much more needs be considered to 
develop useful interactive systems. 

In this paper we will attempt to step back and consider the 
problem of Vision-Based Computer Interaction (VB-CI) from a 
wider perspective.  The ideas presented here are based on our 
experience in building several different interactive systems 
including ones for facial pointing [4] and other head gestures [5], 
various tools for disabled users such as the TouchFree Switch 
[13], hand gesture recognition systems [3], finger pointing and 
selection with projected displays [6] and numerous less successful 
prototypes.  The applied nature of our work has forced us to 
address the entire range of issues involved in creating practical 
tools. 

By VB-CI we are referring to technology which uses a camera to 
sense the user’s intentional actions and then responds in some 
way.  In a fully functional user interface VB-CI would be only 
one component of a larger multi-modal user interface, perhaps 
playing a role analogous to the pointer in the UIs of today by 
providing spatial and manipulation information.   

We envision a VB-CI Interface, or VI, as being composed of 
individual widgets, similar to how a current GUI is composed of 
scroll bars, buttons, menus and the like.  Each widget provides a 
basic type of interaction, such as triggering an event or controlling 
the value of a parameter.  A widget may or may not have a spatial 
location or a representation on the screen.  Just as with current 
interfaces, when the task changes the set of active widgets 
changes as well. 

This paper will address various aspects of the design of a VI.  It 
will first consider general issues such as the interaction styles 
suited for direct sensing interaction.  Vision-based user 
interactions have different strengths and weaknesses than 
traditional input devices.  These differences must be taken into 
account when considering how they should be used and what the 
resulting interface will look like. 

Next, we will examine the problem of designing and building 
individual interface widgets; the atomic actions like pointing and 
scrolling that make up a user interface.  We will consider some of 
the constraints on the control movement imposed by human 
factors, the types of control signal that can be derived from those 
movements, and how those signals can be used to perform the 
desired task. 

Finally we will address how these widgets can be combined into a 
complete VI, and how a VI can be integrated with traditional 
applications and control mechanisms. 



 2

We hope that this discussion will provide some insight into what 
tasks are well suited for direct sensing interaction, the range of 
ways tasks these tasks can be performed, and how these tools can 
be provided to the user in a practical package. 

The discussion will be in the context of vision-based user 
interface techniques, but much of what is said applies to 
interactions using other “direct sensing” techniques, such as 
sensor equipped clothing, active sensors like sonar and IR, etc. 

It is important to keep in mind that our focus is on Interaction 
rather than Recognition.  In other words, we are not interested in 
modeling human behavior or even recognizing it beyond what is 
needed to control some aspect of a computers activity.  In some 
cases, an explicit model of the user or their activity may be the 
best approach, but in many cases a more direct mapping from 
some image feature to the control task is appropriate.   

2. INTERFACE DESIGN 
2.1 Interface Style 
A traditional pointer can sense action along two dimensions, and 
even this limited expressiveness is not fully utilized.  In the nearly 
ubiquitous point and click interface, the sensed activity is only 
used to identify a location on another 2D plane, the screen.  Using 
that location and a combination of clicks, all types of tasks are 
performed.   

With VB-CI we have the potential to extract a control signal with 
many more degrees of freedom, so it does not make sense to limit 
the interpretation to a screen location.  Of course, it is possible to 
translate the control signal into a location and for some tasks that 
may be the best way to use it.  For tasks whose primary goal is 
selection or parameter control, however, it often makes more 
sense to apply the sensor data directly to the task.  For example, 
scrolling speed could depend on the angle of the user’s face as it 
aims above or below the display window.  This interaction saves 
the screen clutter required by scroll bars, and saves the user the 
distraction of having to place a pointer in a small rectangle to 
scroll. 

When taking advantage of the expressiveness of gesture-based 
interaction, it is important not to go too far.  As an extreme 
example consider an interaction based on a complex sign 
language.  This would be more expressive than most tasks require.  
There would be a large penalty in terms of the effort required on 
the part of the user for learning.  There would likely be problems 
with remembering the signs to perform for rarely used tasks.  The 
recognition of such a language would require significant 
computing resources. 

A great deal of knowledge of human computer interaction is 
embodied in the form of current graphical user interfaces.  We 
therefore strive for a middle ground, where tasks which have 
proven valuable in current interfaces are performed using 
interaction styles based on a more flexible direct sensing 
techniques. 

2.2 Interaction Tasks 
In order to explore the ways in which gesture-based interaction 
can be used in a user interface, we have clustered tasks by their 
purpose.  In previous work [5], we identified four categories of 
task well suited for head gesture: 

• Pointing: accurately identifying an arbitrary location on the 
display with high resolution.  This can be used to control a 
traditional cursor, or to position some other object on the 
screen.  In addition to the familiar direct manipulation tasks, 
pointing can also be used as an intermediate step for higher-
level interpretation. 

• Parameter Control: determining the value of some 
continuous parameter.  A common example is to control the 
location in a file to be displayed (scrolling), but numerous 
other applications exist such as setting the pitch or duration 
of a note. 

• Spatial Selection: identifying one of several spatially 
distributed alternatives.  For example, you may tilt your head 
left to select the left button in a dialog box or reach out your 
hand to touch a target floating off your right shoulder. The 
alternatives may be distributed in image, user or screen 
space.   

• Symbolic Selection: identifying one of several alternatives 
by non-spatial means.  The most obvious example is to shake 
your head for yes or no.  The result could be a simple binary 
signal, or could use a more complex alphabet.   

When we consider hand, as well as head gestures, the fourth 
category, Symbolic Selection, can be expanded to include a wide 
range of symbolic activity.  This topic is beyond the scope of the 
current discussion, but the first three categories will form a good 
basis for our examination of VB-CI in general. 

2.3 Context 
With any complex interface there are likely to be far more tasks 
that may be performed than individual control actions.  This 
creates an ambiguity as to the user’s intention, which must be 
resolved by contextual information.   

A strong sense of context can also help avoid what is often called 
the Midas Touch Problem, where everything the user does is 
interpreted as an interaction.  In traditional user interfaces, the 
user can simply not touch an interface device when they don’t 
want to use it.  With direct sensing, however, the user’s actions 
could potentially always be “active”.  Context can tell us when to 
attend to the actions and when to ignore them. 

In current GUIs, context is provided by the screen location of the 
pointer.  For example, a mouse down event in a scroll bar guides 
the interpretation of a subsequent drag as being intended to 
control the location within a file.  A mouse down event in title bar 
implies a subsequent mouse drag should control the location of a 
window.  A click in an inappropriate location can be ignored. 

In VB-CI, it is also possible to use the spatial location of the 
interaction to provide context.  We refer to these interactions as 
“target-based”, implying there is some spatially located target 
where the action must be performed.  As an example, a user may 
have to place their hand into a rectangular region beside them and 
then move it up and down in order to control a parameter value, 
creating a widget similar to a scroll bar. 

VB-CI widgets, however, can often be spatially independent.  For 
example, a selection task such as selecting the leftmost dialog 
button may be implemented by having the user tip their head in 
that direction.  In this case, the location of the head does not 
matter, only its motion, and the context must be provided by some 
other means, generally by the state of the application.  .  
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One can also envision an interaction where the context is provided 
by the current state of the user.  For example, the shape of a hand 
during a motion may control what task the motion performs. 

2.4 Image Space and Screen Space. 
One concept that must be considered when thinking about a VB-
CI is the reference system that is being used for spatial reasoning 
at any point in time.  When we say a target is somewhere in space 
we have to be clear about what space that is.  If it is screen space, 
we have to map the user’s actions to the screen before 
interpretation.  We can stay in image space, so that the target is 
always at the e.g. left of the camera’s field of view, or translate to 
user space, so that the target is always some distance to the left of 
the user. 

Traditional pointing devices always map to a location in screen 
space.  Gesture can also be mapped to screen space, giving a 
relatively traditional point and click style interface, but that is not 
always needed.  Direct interpretation of the action in user or 
image space often provides a simpler solution in terms of both the 
computation involved, and the user’s perception as well. 

Keep in mind that the transformations between these spaces may 
be very simple.  In the case when a camera is observing a user’s 
hand in front of a projected display, image space and screen space 
can be essentially the same.  If the camera is observing the user 
and they are relatively still, image space and user space are very 
similar.  This implies that in some circumstances we can reason 
directly in image space and so avoid the complexity of 
transforming from one space to another. 

3. DESIGNING WIDGETS 
We will now turn our attention to how individual VB-CI widgets 
should be designed.  Three aspects must be considered: the 
Control Action used, that is the motion the user makes to affect 
control; the Control Signal to be used, meaning the signal 
extracted from the control movement that will be actually used to 
control the task; and the Transfer Function.  This is the 
algorithm by which the control signal is converted to the task. 

3.1 Control Action 
The choice of a control movement for a task is often more art than 
science.  It is influenced, however, by several constraints 
including: 

• Intuition: How natural is the motion for the task?  Is it easy 
to remember? 

• Motion: Does the user have sufficient range of motion to 
provide the need resolution?   

• Stability: Can the user perform the movement with sufficient 
stability to accurately control the task? 

• Comfort: Can the user comfortably perform the task for the 
length of time, or the number of repetitions required? 

• Multiplex: Can the user perform the motion while doing 
everything else they need do at the same time?  For example, 
can they comfortably see the feedback the system provides? 

• Visibility: Can the system see the movement adequately? 

• Midas: The action should be unique enough that it will not 
be accidentally performed by the user, thus avoiding the 
“Midas Touch” problem. 

With these constraints in mind, consider what might be good 
control actions for each of the task types in Section 2.1: 

3.1.1 Pointing Actions 
The most intuitive pointing actions include aiming some body 
part, such as a nose or a finger, at the desired location.  While it is 
possible to map any 2D motion, such as a hand on a desk, to a 
screen location, when you do often much of the advantage of 
gestural pointing over a device such as mouse disappears.  A 
stable and responsive pointer motion is essential.  When a 
pointing task requires the user to repeat the action often or for 
long periods, the motion must be comfortable and generally the 
hand should have some type of support.   

If the head is used, it should always be balanced comfortably over 
the neck and not tipped at an awkward angle.  In an early head 
pointing system, we tried left/right head tilt because the motion is 
easy to recognize.  Unfortunately, the repeated and extended 
tilting required quickly became uncomfortable.  The lesson: 
excursions in tilt should be limited in amplitude, duration and 
frequency because in tilt the head is not balanced over the spine, 
making the neck muscles work to hold it up.   

A natural choice for head-based pointing is facial aiming.  
Accurate aiming is intuitive as people aim their faces for social 
reasons as well as to support acute vision and hearing.  As the 
feedback is strictly visual, the multiplex constraint imposed by the 
need to watch the pointer is important to address. 

3.1.2 Parameter Control Actions 
Parameter Control tasks are generally one-dimensional and the 
interactions short, which can make finding an appropriate control 
motion easier than with pointing.  The intuition of the motion 
should correspond to the specific task, such as up for increasing 
values, down for decreasing.  Stability can be an issue to achieve 
good accuracy.   

For a task like facial scrolling, a natural choice is again based on 
facial aiming, where the user aims their face above, below or to 
the side of the document to be scrolled. 

3.1.3 Selection Actions 
Spatial Selection tasks are generally very brief, making stability 
and comfort even less of an issue.  This brevity can make 
multiplex constraints an issue, however, as the user may not want 
to move their hands from their current task (e.g. typing) for such a 
brief interaction.  For this reason, facial gesture can be a good 
alternative for many selection tasks, the user aims their face in the 
direction of the selection.  The range of motion need only be large 
enough for the system to unambiguously distinguish the 
alternatives.  Depending on the number of alternatives the motion 
can be very small. 

As an example, consider using facial selection to select one of 
buttons in a dialog box.  A natural interaction is to have the user 
aim their face left or right to highlight the desired button, then tip 
their head down to select it.  The down movement is important to 
avoid an inadvertent selection when the user paused to think about 
their response. 

3.2 Control Signal 
Once a control action is determined, a signal must be extracted 
from the image sequence that captures the important aspects it.   
This signal is then used to drive the desired system response.  This 
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paper will not attempt to classify all the different types of control 
signal that could be used.  The state of the art in gesture 
recognition is changing very fast and much of what we say would 
quickly be outdated.  Instead, we will try to classify control 
signals along general dimensions. 

3.2.1 Image- versus model-based control signals 
Much work in the recognition of human action comes from the 
computer vision community where building accurate internal 
models of the world is a strong tradition.  Once a model is built, 
some parameter of that model can be used as the control signal.  

The model-based approach often extracts more information about 
the user than necessary, implying it is more computationally 
expensive than necessary.  In addition, current techniques for 
building 3D models are often noisy and unreliable with respect to 
the demands of real time interaction [12].   

Some of these problems will fade with time, but the advantage of 
decreased computational complexity should not be 
underestimated.  Higher frame rates contribute directly to better 
usability; moreover, camera-based interactions are likely to be 
used in concert with other resource intensive applications such as 
voice recognition as part of a multi-modal user interface.  Even 
with the faster machines several years in the future, users will 
want their computing resources available for the target task, not 
squandered by the interface.   

For real-time interactive systems, the simpler image-based 
approach is often preferable.  Here the image sequence is 
examined for a signal that tracks the control movement, and then 
mapped directly to the task. 

Image-based control signals fall into two categories, position-
based and value-based.  Value-based signals track the value of 
some image parameter at a location.  The signal is chosen such 
that its value changes distinctively when the user performs the 
control action.  For example, you might compute a color-
histogram of a small region of the image to detect when the user 
“touches” it.  This approach can work well for detecting discrete 
events, but since these signals generally do not change 
monotonically with the user’s actions, it is difficult to use them 
for parameter control type tasks. 

More interesting are the position-based signals, where some 
image feature is tracked within the image.  We refer to these as 
2D control signals.  These signals generally do vary 
monotonically with the user’s actions, making them suited for 
control tasks.  They can also be interpreted with some decision 
function to give a selection task.   

3.2.2 Absolute Versus Relative Control Signals 
Many position-based control signals can be considered as 
belonging to one of two categories: 

• Absolute signals, which record the state of the user with 
respect to some fixed reference. 

• Relative signals, which record the state of the user with 
respect to their previous state. 

These can correspond to location and velocity, or to orientation 
angle and angular velocity, or to nearly any other image feature 
we may wish to extract.  

Relative signals are difficult to use in situations where there is a 
limited range of motion or where there must be some relationship 
between a user’s position and the state of the system she is trying 
to control.  For example, with facial aiming the need for the user 
to look at the current pointer location as they control it makes 
relative signals impractical.  Absolute signals have their own set 
of complications.  A reference state must be determined, then 
either remain fixed, or be tracked during the interaction.  For 
example, depending on the task we may want to use the location 
of the hand within the image, with respect to some background 
object, or with respect to the user’s body.  In the later two cases 
the location of the reference point must be tracked, in addition to 
the location of the hand. 

An example from our facial pointing system will illustrate the 
discussion.  Because of the importance of real time response, we 
chose to use an image-based control signal.  If the camera is 
looking at the user approximately head-on, small 3D head rotation 
appears as 2D translation of the facial image (with increasing 
amounts of image warping).  The expected range of facial image 
motion can be computed to within small error using the size of the 
facial image and typical head dimensions.  This allows the 
location of the facial image within its range of motion to be used 
as a proxy for head rotation.   

Using image-based control signals allows us to ignore several 
difficult problems we would have to address in order to build a 
model.  For example, we estimate the range of motion of the face 
based only on it's size.  We need not care if the apparent size is 
due to the distance of the user from the camera, the properties of 
the lens, or the resolution of the image.  What is important is the 
relative position of the user's face within its range of motion, 
giving us an absolute control signal. 

We track the face using cross-correlation: matching a face 
template within a small search region in each frame.  The average 
of the absolute value of the difference between the gray level of 
corresponding pixels seems to give better stability than using a 
squared pixel difference. 

The search region is computed using the maximum reasonable 
head speed during pointing, determined empirically to be about 3 
facial diameters per second, and the instantaneous frame rate.  The 
search region is expanded on two sides, if needed, to ensure that it 
includes the center of the range of motion.  This gives the user a 
simple recovery mechanism when the system looses their face - 
orienting their face back to the position used in training (looking 
at the center of the screen) usually results in the face being found 
immediately. 

This relatively simple template-matching tracker has proven 
robust under a wide range of circumstances.  In good lighting, we 
can track the face through about a 60-degree arc horizontally (30 
degrees on either side of the camera), and through about 40-
degree arc vertically. Tracking speed is excellent.  At 160x120 
pixel resolution we can track the user’s face at nearly 30 frames 
per second, using only a small fraction of the CPU1.  With a well-
designed transfer function, this resolution is ample for smooth and 
accurate pointer movement. 

                                                             
1All performance numbers were obtained on a 700 MHz Intel 
processor running Windows 2000.  Code was written entirely in 
C++ using only basic optimization techniques. 
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3.3 Transfer Function 
The final step in building a widget is to map the control signal to 
the task.  For pointing and parameter control tasks the transfer 
function is generally a mapping from one continuous value to 
another.  For selection tasks, it becomes a decision function on the 
control signal. 

3.3.1 Transfer Functions for Parameter Control 
Tasks 
A transfer function for parameter control tasks needs to do at least 
three things, reduce noise and error in the sensed signal, 
compensate for low control signal resolution, and provide the user 
with a pleasing and usable response.  The jobs can be addressed 
independently, or combined into a single function, but all aspects 
must be considered.  Noise reduction is often addressed in current 
“gesture recognition” work by filtering approaches [11].  Low 
sensing resolution is generally handled in the same step.  Issues of 
usability are only rarely addressed in the PUI community.  
Fortunately, we can draw inspiration from the traditional HCI 
community, where these issues have been addressed for some 
time [9]. 

3.3.2 Rate vs. Position Control 
The value of a parameter, such as the location of the pointer on 
the screen can be controlled using either its change (motion) 
relative to a previous value (rate control) or by setting its absolute 
value with respect to some reference (position control).  Consider 
two examples.  They use two different absolute control signals in 
order to make them more realistic. 

Absolute Signals controlling Position (AP): The location of the 
facial image within a box positions the pointer on the screen 
correspondingly. 

Absolute Signals controlling Rate (AR): The rotation of the face 
from straight ahead determines the speed of the pointer in the 
corresponding direction. 

True nose pointing, in which the pointer is positioned where a 
really long nose would touch the screen, is an instance of AP 

where the mapping function from orientation to screen location 
takes into account the 3D geometry of the environment.   

Depending on the task and the desired interaction style, either rate 
or position control may be applicable.  The following will discuss 
our development of the transfer function for a face-tracking 
pointer in order to make some of the issues more concrete. 

For what follows, C refers to the control signal, which can be 
either the angle of the face, θ , or the displacement D of the facial 
image within its range of motion as described in the previous 
section.  P refers to the location of a pointer on the screen (see 
Figure 1). Every frame the transfer function will convert C to a 
new P. 

In our first attempts to build a transfer function for a facial 
pointer, we mapped C by various simple transforms to either an 
absolute pointer position T (AP interaction) or a pointer motion R 
(AR interaction).  The AP version required significant filtering of 
T to compensate for noise in and coarse resolution of C.  While 
this approach worked, it did not give a pleasing and responsive 
pointer motion, which had a big impact on usability and user 
satisfaction.   

With the AR version, we were able to tune the transfer function 
between C and R to improve pointer dynamics.  This gave a 
transfer function which was suitable for various other  body parts, 
e.g. hand tracking, but with face tracking we encountered a 
problem.  Under common circumstances, the face must be aimed 
away from the pointer to get the desired motion, making viewing 
the pointer uncomfortable.  For example with P on the far left of 
the screen, the user has to aim their face straight ahead to keep it 
still and look at P out of the corner of their eyes.  To move P 
slightly right they must aim their face further away from P, 
making matters worse.  We were able to compensate by applying 
a bias to the facial offset calculation, such that C=0 when the 
user’s face aimed at P.  Unfortunately, this made the algorithm 
cumbersome to work with, limiting further development.   

This, however, lead us to a hybrid rate and position control 
scheme, where C is translated to a target screen location T, and the 
distance F between P and T determines R, which is assumed to be 
in the direction of T.  The nature of the mapping from F = T − P  
to R, more than anything else, impacts usability, and here much 
can be learned from similar work in the HCI community such as 
[9].  Our best mapping to date is from a sigmoidal relationship  

R = Rmax

1 + e− F−k
l   
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such that when T is near P large head movements are needed to 
move it, making fine positioning easier.  When T − P  is large, 
R j T − P so that P tracks T very closely, making for rapid long 
distance moves.  Importantly, a sigmoid is easy to tune by 

adjusting knee j,  slope l  and the maximum output value Rmax. 

The main advantage of this hybrid algorithm is that it allows us to 
separate issues specific to sensing the control signal from issues of 
pointer dynamics and usability.  This has made it easier for us to 
both tune the system for good usability by adjusting pointer 
dynamics, and also to make progress on the remaining problems 
such as compensating dynamically for changes in user / screen 
geometry.   

Pure AR interaction does have its place.  It is well suited for input 
signals that do not map well to a screen location, making it 
suitable for use with a wider range of human motion.  It is also 
easier to adapt for use with relative control signals.  For facial 
pointing, however, the hybrid method is easier to work with. 

With respect to the preceding discussion, then, we can examine 
how this algorithm addresses the various tasks of a transfer 
function.  The resolution mismatch is handled by the fact that we 
are controlling the rate of the pointer, not its location.  Low 
amplitude noise is addressed by the low “gain” between small 
control signals and pointer motion (the left of figure 2).  High 
amplitude noise still gets through.  This generally does not present 
a problem, but if it did in a particular application, it could likely 
be handled by specific filters in the computation of T.   

This algorithm addresses several usability issues.  It addresses the 
multiplex problem of having to look at the cursor with the 
position control component (the fixed computation of T).  It also 
addresses an inherent conflict between providing the user with 
precise control for fine positioning and at the same time fast long 
traversals using a highly non-linear gain between F and R. 

One more aspect of the hybrid transfer function should be pointed 
out.  There is another degree of flexibility by which this algorithm 
can be adjusted to the needs of the user and the task.  If the 
horizontal and vertical components of R are computed 
independently, the pointer will show a mild affinity to track 
horizontal or vertical lines.  This comes about because the two 
components of C fall at different points of the sigmoid.  This 
affinity can be helpful when the pointer is being used primarily as 

a selection device, but when the user desires more accurate free 
form drawing, it can easily be disabled by computing R using the 
combined vector length of C. 

3.3.3 “Transfer Functions” for Selection Tasks. 
Transfer functions for selection tasks are less of the form of a 
numerical mapping and more of the form of a decision function.   

For image-value-based control signals (see Section 3.2.1) the 
decision function is generally of the form: “has C changed 
sufficiently in this region to justify a decision”.  This decision can 
be based on many types of comparison.  One which we have had 
good results with is color histogram matching.  Here the color 
histogram of the desired image region is matched to the histogram 
of either the background to determine when sufficient change has 
occurred, or to the foreground, obtained through training, to 
determine when the desired action has been performed.  The 
distance threshold gives a simple knob for the end user to adjust to 
obtain the desired sensitivity.  The histograms are structured to 
remove some of the dependence on lighting, generally by using 
HIS color space, and quantizing the Intensity dimension very 
coarsely.  This is the approach taken in the TouchFree Switch 
[13]. 

Position-based spatial selection tasks often require C to be first 
converted to a space more intuitive for the user than the original 
image coordinate system before being operated on with a decision 
function.  The conversion can be done using simple coordinate 
system transformations, or by complex transfer functions like 
those described in Section 3.3.  After the transform, however, the 
choice of decision function depends heavily on task and user 
constraints.   

In a projection display interaction system we have developed [6], 
the user’s fingertip is located in an image of a projected display 
(Fig. 3a) by matching a fingertip template in a frame-to-frame 
difference image (Fig 3b & 3c).  The trajectory of the fingertip is 
then examined for patterns that indicate the user reached out, 
touched the active area (button), paused, and then retracted.  This 
decision function proved to be very robust in the target domain, 
where users performed isolated selection interactions, but would 
fail in an environment where sequential selections were needed 
with no retraction in between.  This illustrates how the decision 
function must be tightly tuned to the user’s actions in the given 
environment. 

     
Figure 3: a) Camera view of user interacting with projected button; b) image difference data; c) overlay of search region 

(square), button active area (circle), and the fingertip template shown at the pointing location. 

a b c 
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4. APPLICATION ISSUES 
Once we have a library of widgets we must address how they are 
combined into sets that allow the user to perform all the tasks 
required by an application at any point in time.  We must be able 
to: 
• Create collections of widgets (configurations) to perform 

application level tasks. 

• Switch between configurations to accommodate changes in 
the application's context. 

• Allow the user to customize the interface to their desired 
motion patterns. 

• Adapt, either automatically or with user assistance, to the 
current imaging conditions. 

• Easily integrate VIs into a new or existing application 
without any knowledge of computer vision. 

We have just begun to explore these issues, but already some 
important points have become apparent 

4.1 Configuration Sets 
Like a standard GUI, a VI must be able to handle context changes 
in the application level task.  We handle this by activating the 
appropriate configuration set at the request of the application.  For 
instance, when a yes/no dialog appears, an application may 
temporarily replace a face-tracking configuration with a symbolic 
widget that interprets nods or shakes of the head.  In this way, 
visual interface widgets can be combined both concurrently and 
sequentially to provide more complex interactions. 

One problem that must be addressed in any practical system is 
that the user be kept aware of which widgets or configuration sets 
are active any time.  One solution is for each widget to have an 
on-screen representation drawn over the video stream in a display 
window.  This approach works well when the camera view is 
looking straight back at the user such that the display appears like 
a mirror.  In other circumstances, however, the camera is at an 
odd angle, and the display is disorienting to the user.  In this case 
we have found it very useful to be able to project a target or other 
widget representation directly into the environment for the user to 
interact with (see [6]). 

Creating configurations of widgets with completely independent 
control signals, such as combining selection targets with facial 
pointing, is relatively straightforward.  There is little conflict 
between widgets, and the user can easily understand what they 
need do to activate one widget rather than another.   

When the widgets share a control signal, however, the situation 
becomes more complicated.  A good example comes from a 
system where we tried to combine facial pointing with an on-
screen keyboard where the characters were selected with left / 
right facial motion, and typed with a vertical movement, up for 
upper case, down for lower case.  Both the system and the user 
needed to clearly differentiate when the facial motion was to be 
used for pointing or typing. 

Our solution was to give one of the widgets a spatial trigger.  The 
keyboard only became active when the pointer reached the top of 
the screen.  Then the keyboard was displayed and the keyboard 
widget took over.  We are in the process of formalizing a method 
for this type of control signal sharing between widgets. 

In order that widgets in the same configuration be able to share 
control signals, widgets must not be built as single, monolithic 
objects.  If there are two separate widgets driven by a face-
tracking algorithm (such as the pointer driver and on-screen 
keyboard), there should be no need to run the tracking algorithm 
twice.  We have begun to explore how widgets can be divided 
vertically to facilitate this type of sharing. 

To handle these related design issues, namely the multi-staged 
processing involved in a widget and the one-to-many relationship 
that may occur between control signal detection algorithms and 
widgets, we build widgets from "stackable" layers of components.  
A component is an object that handles a single processing task 
and passes the resulting control signals to the component(s) in the 
next layer.  Expanding our previous example, a component would 
encapsulate the face-tracking algorithm, inputting the raw video 
stream and outputting the position of the user's face within the 
image.  These face position signals would subsequently become 
the inputs to two separate chains of components, one of which 
would make up the pointer driver and the other comprising the on-
screen keyboard. 

This hierarchical component architecture also has the advantage 
of making the widgets very versatile.  A developer (or even a 
user) can create a new widget by mixing and matching existing 
components.  For instance, a face tracking widget that drives the 
cursor can be altered to drive scroll bars simply by swapping in a 
component that sends scroll messages rather than mouse 
messages.  

4.2 Training and Personalization 
Unlike a typical physical control device (i.e., a mouse or 
keyboard), the vision-based interface must derive its control 
signals from a noisy, high-bandwidth input medium.  Equally 
important, every person has somewhat different movement 
patterns and preferences.   

Differences between users tend to be filtered out by physical user 
interface hardware.  If someone has difficulty using their right 
hand, they can move the mouse to the other side of the keyboard 
without the computer caring.  With direct sensing interfaces, 
however, the differences in how people move must be handled 
explicitly by the software.   

Because much of our work thus far has been focused on the 
special needs community, where the ranges of motion and levels 
of control differ significantly among these users, we have been 
forced to address this issue in its most extreme form.   

To address inter-personal variation, personalization and training 
of a VI become critical.  We allow two stages of personalization.  
At the high end, the user can move widgets and customize their 
response, even changing the widget type from a selection pallet if 
needed.  This type of configuration is not something that should 
have to be performed every session, or by every user, but in our 
experience having this type of flexibility is important I achieving 
the potential of the system.   

After a user personalizes her interface configuration, a training 
step is often required, where the user shows the widget what type 
of action they will perform so that it can tune its recognition 
procedure.  Completely automatic training is desirable but is often 
difficult and unreliable in the current state of the art.  In our 
experience, manual training can be made sufficiently painless -- 
often reduced to simply pressing one or two keys (or the 
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equivalent) at the beginning of a session – that fully automated 
training is not necessary for usable systems. 

5. CONCLUSION 
This paper has endeavored to outline the space of vision-based 
computer interaction, identifying various dimensions along which 
vision-based interactions can be built.  We have classified the 
types of tasks which seem to be well suited to gesture-based 
interaction into the categories of Pointing, Parameter Control and 
Selection, leaving aside Symbolic interpretations for now.  We 
described the design of widgets to perform each type of task, 
starting with the choice of control movement, then the extraction 
of control signals from the visual input, classifying them as 
Absolute or Relative.  We described transfer functions for the 
various types of tasks, including Position and Rate control 
functions for parameter control tasks, and decision functions for 
selection tasks.  Finally, we addressed how to combine widgets 
with each other into sets that can be enabled and disabled to suit 
the needs of the application.  Along the way, we discussed the 
ways in which gestural interaction differs from traditional user 
interfaces, and gave examples from real systems. 

We hope this will provide the beginnings of a framework for a 
more rigorous analysis of gestural interaction systems.  We can 
now begin to see the parts of the solution space that have and have 
not been explored, and to identify promising untried interaction 
types.  We will also be using this analysis to design more formal 
user studies that can be used to quantify the differences between 
the various approaches. 
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