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Abstract Wearable computers are embedded into the
mobile environment of their users. A design challenge
for wearable systems is to combine the high performance
required for tasks such as video decoding with the low
energy consumption required to maximise battery run-
times and the flexibility demanded by the dynamics of
the environment and the applications. In this paper, we
demonstrate that reconfigurable hardware technology is
able to answer this challenge. We present the concept
and the prototype implementation of an autonomous
wearable unit with reconfigurable modules (WURM).
We discuss experiments that show the uses of reconfig-
urable hardware in WURM: ASICs-on-demand and
adaptive interfaces. Finally, we present an experiment
with an operating system layer for WURM.

Keywords Body area computing system Æ Embedded
systems Æ Field-programmable gate arrays Æ
Reconfigurable hardware Æ Wearable computing

1 Introduction

Many current wearable systems are built out of standard
components such as personal digital assistants (PDAs) or
sub-notebooks. These more or less miniaturised general-
purpose computers are very attractive due to their easy
availability, low price and matured development tools,
including compilers and operating systems. However,
they are not optimised for wearable usage. Keyboard or
pen-based data entry and LCD display contradict the

unobtrusive, hands-free operation paradigm of wearable
computing. Moreover, distributed on-body computing
systems built out of PDAs and sub-notebooks are highly
inefficient due to the lack of specialisation of the single
components.

In this paper, we argue that future wearable com-
puting systems should be viewed and designed as
embedded systems. Due to the movement of its user, a
wearable computer is embedded into a mobile environ-
ment and needs to interact with this environment. We
denote such a computing system as a body area com-
puting system. Figure 1 sketches a body area computing
system that is composed of a set of distributed nodes and
a communication network centred around one general-
purpose main module.

Sensors and actors are distributed over the human
body. The current efforts in integrating electronics and
wires into clothing, shoes and other appliances promote
this distribution. For example, Van Laerhoven et al. [1]
and Kern et al. [2] attach acceleration sensors to the
body to discriminate between user actions. These ac-
tions are then used to extract high-level context infor-
mation. Kymissis et al. [3] present piezo-electric
generators integrated into shoes, powering a wearable
subsystem when the user is walking. The spatial distri-
bution of sensors and actors implies that computation
is also bound to specific locations on the body. Since
communication—in particular wireless communica-
tion—is rather costly in terms of energy consumption, it
is advantageous to reduce the communication demand
by moving sensor data preprocessing and actor control
very close to the sensors and actors, respectively. For
instance, the filtering and compression of sampled
audio data is best done directly at the microphone
node.

The communication network is a mixture of wireless
and wired connections. Presently, wireless is the pre-
dominant technology. In the future, conductive textiles
might increase the trend toward wired connections for
nodes in the same piece of textile, as has been described
by Kirstein et al. [4] and Park et al. [5]. External net-

Pers Ubiquit Comput (2003) 7: 299–308
DOI 10.1007/s00779-003-0243-x

Christian Plessl Æ Rolf Enzler Æ Herbert Walder

Jan Beutel Æ Marco Platzner Æ Lothar Thiele
Gerhard Tröster
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works and pervasive computing facilities are also
accessed by wireless technologies, such as cellphones or
wireless LAN.

As body area computing systems are distributed
embedded systems, they are subject to several design
constraints, described as follows.

Multi-mode performance: wearable systems are multi-
mode systems. They require a fixed baseline performance
for running control tasks that neither show high compu-
tational demands nor stringent timing constraints.
Occasionally, wearable systems execute bursts of com-
putation-intensive tasks that carry real-time constraints
[6]. An example for a task that can be served best effort is
reading position sensors to update the geographical
context. Examples of real-time tasks are audio and video
coding.Wearable computing systemsmust have sufficient
performance to satisfy the real-time constraints. Missed
deadlines render the system useless.

Energy awareness: the energy awareness of the body
area computing system is essential since we want the
wearable system to be on and functional the whole day.
Designing energy aware wearable systems leads to sev-
eral challenges, including energy-efficient computation
and dynamic power management. Energy-efficient com-
putation means that a task has to be run such that the
amount of dissipated energy is minimised while the
system retains its functionality. It is important to clearly
distinguish between low power consumption and energy
efficiency. The power consumption is the measured en-
ergy dissipation divided by the measurement period. In
data sheets, the power consumption is often used like a
device parameter without any detailed reference to the
specific instructions or tasks executed. In contrast, the
energy efficiency relates to the total energy the device
needs to compute a specific task. The challenge is to
design devices with high energy efficiency for the set of
tasks given. For example, it is quite possible that the
total dissipated energy for a given task is smaller on a
device with a high power consumption which executes
quickly, than on a slow device with a lower power
consumption. Dynamic power management comprises

techniques that assign tasks to the most energy-efficient
devices available and that force other unused system
components into their power-down modes or even shut
them off when appropriate. Many applications of
wearable computing systems extract and use high-level
context information. This facilitates the implementation
of advanced dynamic power management techniques
that make use of the current context and even predic-
tions of future user actions.

High flexibility: the body area computing system has
to handle highly dynamic situations. Firstly, the appli-
cation requirements vary strongly with the user’s choi-
ces, but also with the context and the location. Secondly,
as clothes are put on and off, components are dynami-
cally added and removed from the body area computing
system. On a longer time scale, deployed wearable sys-
tems have to adapt to emerging or changing communi-
cation standards and protocols.

Further design criteria includes reliability, availability
and form factors such as volume and weight. As wear-
able systems will eventually become consumer devices,
cost and reduced time-to-market will also become
important design goals.

In summary, we can state that the flexibility
requirements in wearable computing demand a pro-
grammable general-purpose computing system, while
the high performance and energy awareness require-
ments demand a specialised computing system. To an-
swer this design challenge, we propose to incorporate
reconfigurable hardware in the computing nodes of the
body area computer system. In this paper, we present
wearable nodes comprised of small-to medium-range
CPUs and reconfigurable modules. The reconfigurable
hardware in these nodes achieves a higher performance
and is more energy-efficient than the CPU for compu-
tation-intensive real-time tasks.

We first discuss the advantages of reconfigurable
hardware in body area computing systems, and then
introduce the concept of a wearable unit with reconfig-
urable modules (WURM). Later, we present a WURM
prototype implementation and report on several
experiments with the prototype, and then outline future
work.

2 The advantages of reconfigurable hardware
in wearable computing

In this section, we first review the main characteristics of
reconfigurable hardware and compare them to proces-
sors and dedicated hardware. Then, we advocate the use
of reconfigurable hardware in wearable computing
nodes and discuss related work.

2.1 Reconfigurable hardware

The predominant reconfigurable hardware device today
is the field-programmable gate array (FPGA) [7].

Fig. 1 The body area computing system
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FPGAs were introduced to the market at the high-end of
programmable logic devices (PLDs) in the mid 1980s.
FPGAs consist of an array of logic blocks, routing
channels to interconnect the logic blocks and sur-
rounding input/output (I/O) blocks. SRAM-based
FPGAs use SRAM cells to control the functionality of
logic and I/O blocks as well as routing, and can be
reprogrammed in-circuit arbitrarily often by down-
loading a stream of configuration data to the device.

While early FPGA generations were quite limited in
their capacities, today’s devices feature millions of gates
of programmable logic and, additionally, dedicated
hardware blocks such as fast embedded memories and
fixed-point multipliers. To interface to external compo-
nents, FPGAs are compliant to a number of high speed
I/O standards and can directly interface to DDR RAM,
or to the PCI or AGP bus. Current FPGAs have suffi-
cient resources to implement rather complex circuits
such as cryptography algorithms, image and video pro-
cessing functions, networking interfaces and complete
CPU cores.

A currently popular trend is to combine FPGAs with
CPUs to form hybrid computing systems, or so-called
configurable systems on a chip (CSoC). The CPUs in
CSoCs can be implemented in two different ways: as soft
cores or as hard cores. A soft CPU core is synthesised
and mapped to the FPGA’s logic resources. A hard CPU
core is a dedicated piece of hardware integrated into the
FPGA fabric. While a hard CPU core delivers maximum
performance, a soft CPU core allows for easy architec-
tural extension. Examples of commercially available
hybrid systems that integrate FPGAs with hard CPU
cores are Triscend’s 8051-based E5 [8] and Xilinx’s
PowerPC-based Virtex-II Pro [9]. The tight integration
of CPU and FPGA allows for low-latency and low-
power communication.

SRAM-based FPGAs are configured either statically
or dynamically. In the case of static configuration, the
FPGA loads the configuration data from an external
non-volatile memory at system startup. The configura-
tion does not change during the system’s runtime. In the
case of dynamic configuration, an external host proces-
sor writes the configuration data to the FPGA. This
allows to change the FPGA configuration on demand.
The configuration data size of a current high-end FPGA
is about 1–4 MB, which results in configuration times of
about 12.5–50 ms. Some FPGAs offer an advanced re-
configuration mode, partial reconfiguration, which al-
lows the configuration of parts of the device at runtime.
Partial reconfiguration enables true multi-tasking and

reduces the configuration times for single tasks sub-
stantially.

2.2 The efficiency of reconfigurable hardware

With respect to performance, power consumption and
flexibility, reconfigurable hardware is positioned be-
tween processors and dedicated hardware (an applica-
tion specific integrated circuit, or ASIC). For a given
function, dedicated hardware achieves the highest per-
formance and the lowest power consumption due to its
high degree of specialisation. However, dedicated hard-
ware is also inflexible. For a general wearable computing
node, programmable solutions such as processors or
reconfigurable hardware are required. Compared to re-
configurable hardware, processors pay area and runtime
penalties for instruction storage and handling, i.e.,
fetching and decoding. Advances in semiconductor
technology will allow future generations of processors to
become more widespread in high-performance and low-
power applications. However, since reconfigurable de-
vices also benefit from advances in process technology,
their advantages in terms of performance and power will
persist.

Several case studies have shown that FPGAs achieve
higher throughput and are more energy-efficient than
processors, provided that the application matches well
the spatial structures of FPGAs and reveals a sufficient
amount of parallelism.

Mencer et al. [10] compared different implementa-
tions of the IDEA cryptography algorithm on RISC and
DSP processors and on an FPGA. Abnous et al. [11]
performed similar studies on finite and infinite impulse
response filters (FIR, IIR). Table 1 summarises the re-
sults and gives the throughput and energy efficiency for
each application. For IDEA, the throughput is mea-
sured in millions of encrypted bits per second, and for
FIR and IIR the throughput is measured in millions of
filter taps per second. As Table 1 shows, the FPGAs
achieved the highest performance. The energy efficiency
relates the performance to the power consumption. For
all applications, the FPGAs achieved a better energy
efficiency than the embedded RISC processor. The DSPs
outperformed the FPGAs in energy efficiency for FIR
and IIR, because these filters perfectly match the DSP
architectures.

Stitt et al. [12] studied the energy efficiency of hybrid
CPUs for embedded systems and evaluated a set of
benchmarks that are relevant to wearable computing.

Table 1 A comparison of
throughput and energy
efficiency between RISC, DSP
and FPGA for the IDEA
cryptography algorithm, FIR
and IIR digital filters

Type Device IDEA [10] FIR [11] IIR [11]

RISC StrongARM SA-110 32.0 32.0 9.9 26.7 1.5 3.6
DSP TI TMS320C6x 53.1 8.9 – – – –

TI TMS320C2xx – – 20.0 769.2 1.0 52.4
FPGA Xilinx XC4020XL 528.0 167.6 – – – –

Xilinx XC4003A – – 30.0 454.5 2.1 9.7
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On the Triscend E5 device, they measured an energy
savings of 71% on average by moving application ker-
nels to the FPGA instead of running the applications
solely on the CPU.

2.3 Reconfigurable hardware in wearables

We see two main uses of reconfigurable hardware in a
wearable computing node: ASIC-on-demand and
adaptive interfaces.

2.3.1 ASIC-on-demand

Many computational-intensive functions can be more
efficiently executed in reconfigurable hardware than on a
processor. We denote such functions, which are loaded
into reconfigurable hardware as needed, as ASICs-on-
demand. Small wearable nodes with attached sensors,
especially, benefit greatly from ASICs-on-demand. Such
nodes often require computational-intensive prepro-
cessing to reduce data rates. This is motivated by the fact
that wireless communication is more expensive than
computation in terms of energy [13].

Figure 2 outlines a typical scenario for a wearable
sensor node. The node is attached to a microphone and
preprocesses the raw audio data in different ways. In a
voice recording application, high-quality audio samples
are recorded, compressed and transmitted to the re-
corder’s database, presumably located on the main
module. In a feature extraction application, we are
interested in deriving information useful for the context
engine rather than in high audio quality. For example,
[14] describes a feature extractor that is based on a dozen
features and discriminates between five types of TV
programs. The feature extraction and analysis is done by
means of a neural network. Both audio compression and

feature extraction are computationally demanding and
would require a high-performance CPU. It is more en-
ergy-efficient to use a small-range CPU for control and
communication and to execute the preprocessing in re-
configurable hardware.

2.3.2 Adaptive interfaces

For economic reasons, we are interested in reusing the
same wearable node for many applications. This is
facilitated by adaptive interfaces. A node can be equip-
ped with a rich set of generic interface pins. The recon-
figurable hardware connects these pins with the
processing modules on demand.

Again, nodes attached to sensors are the prime
example. Sensors come with a multitude of different
interfaces, ranging from simple two-port analog and
digital interfaces to more complex interfaces, e.g., SPI or
I2C bus. Often, data from several sensors is fused to
derive high-level context information. The numbers and
types of sensors required varies with the application and
the position on the human body. In one scenario, a leg-
bound sensor node might process the signals of dozens
of acceleration sensors for accurately determining the
leg’s movement [15]. In another scenario, a chest-bound
node that discriminates between indoor and outdoor
might have only one or two light sensors attached to it.

The two uses of reconfigurable hardware in wearable
computing are combined when reconfigurable hardware
computes interface conversions and protocol stacks to
relieve the CPU from such tasks.

2.4 Related work

Scalera et al. [16] suggest using reconfigurable hardware
for sensor data preprocessing and present the CAlS
(common architecture for microsensors) platform.
Acoustic signal detection is discussed as an example
application. Significant improvements are reported in
terms of system size, power consumption and weight,
compared to a CPU based predecessor system. In con-
trast to our work, the reconfigurable devices are mainly
used as an alternative to ASICs; the dynamic reconfig-
uration capabilities are not exploited. The system func-
tionality is configured once and then remains
unchanged. We consider the loading of different tasks
on-demand at runtime.

The use of reconfigurable technology for mobile,
networked appliances was investigated by Mignolet et al.
[17]. Their demonstration system uses an FPGA board
with two Virtex-II FPGAs attached to the expansion
slot of a Compaq iPaq PDA. The hardware and soft-
ware resources are managed by a modified version of the
real-time Linux operating system running on the PDA.
A middleware layer overlays the operating system and
schedules tasks according to quality-of-service parame-
ters. This work shares many similarities with our
approach. However, we stress small-scale embedded

Fig. 2 Two audio applications running on the same wearable node.
a Voice recorder b Context recognition

302



nodes and the distributed nature of wearable computing
systems.

Yau and Karim [18] proposed a reconfigurable mid-
dleware layer for autonomous decentralised systems,
called reconfigurable context-sensitive middleware
(RCSM). The goal of RCSM is to facilitate applications
that require context-awareness and/or spontaneous and
ad-hoc communication between heterogeneous mobile
nodes. The computational intensive parts of RCSM are
implemented in FPGAs in order to achieve the required
performance. In contrast to RCSM, our approach does
not restrict reconfigurable hardware to the middleware
layer.

3 WURM

This section presents the WURM architectural concept
for a basic node of the body area computing system and
its envisioned integration into a body area computing
system.

3.1 The WURM hardware architecture

Figure 3 shows the WURM hardware architecture. A
WURM node consists of a CPU, a reconfigurable
hardware unit, memory, a set of I/O interfaces that
connect to sensors and actors and a wireless interface for
communication with other nodes.

The CPU handles control tasks and tasks that need
low to medium processing power. The reconfigurable
hardware unit executes tasks with high computation
demands, but can also run communication protocol
functions to relieve the CPU. The reconfigurable hard-
ware is further used for interfacing to external sensors
and actors. Both the CPU and the reconfigurable
hardware unit have power save modes.

WURM is a concept and different wearable nodes can
have different realisations of the WURM architecture.
Nodes can differ in their CPUs and in the capacity of the
reconfigurable hardware. An audio preprocessing node,
for example, uses only one sensor interface to connect to
the microphone and would employ a mid-range CPU and
reconfigurable hardware. A WURM node for leg
movement analysis will interface to many acceleration

sensors, but a low-end CPU plus a smaller amount of
reconfigurable hardware resources might be sufficient.

3.2 The WURM software architecture

Figure 4 shows the WURM software architecture. In
this paper, we concentrate on the WURM operating
system (WURM-OS) layer. WURM-OS manages the
available hardware resources of the node, i.e., the CPU,
the reconfigurable hardware unit, the memory and the
I/O. The main service WURM-OS performs at higher
system layers is the execution of software and hardware
tasks. Software tasks run on the node’s CPU, hardware
tasks execute on the reconfigurable hardware unit.

WURM-OS is based on a standard real-time kernel
for microprocessors, but extends the system services to
the reconfigurable hardware. The development of oper-
ating system layers for reconfigurable hardware is quite
a new topic and involves several challenges. While the
CPU executes tasks quasi-parallel by pre-emption, the
reconfigurable hardware allows for concurrent task
execution. Basically, WURM-OS performs task and
resource management for the reconfigurable hardware
unit which includes:

– loading, executing and removing tasks
– establishing interfaces between the tasks and the I/O
– scheduling and placing of tasks

A central concept in the WURM architecture is the
hardware task. A hardware task is described by several
structural and timing characteristics which WURM-OS
uses for scheduling and placement decisions. The main
structural characteristics are size and shape. The size
gives the area requirement of a task in number of logic
blocks. The task shapes can reasonably be assumed to be
rectangles. A further structural characteristic is a reloc-
atability. Relocatable hardware tasks can be placed
anywhere in the logic block array. Non-relocatable tasks
must be placed exactly on their predefined positions,
e.g., to access special resources. The main timing char-
acteristics of a hardware task are the number of required
cycles and the maximum clock frequency. The number of
required cycles might or might not be known in advance.
Instead of a maximum clock rate, the clock range can be
given. A task might require a clock rate in a certain

Fig. 3 The WURM hardware architecture Fig. 4 The WURM software architecture
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interval to preserve timing requirements of the I/O de-
vices or the memory.

3.3 The integration into the body area computing system

As outlined in an earlier section, we consider a wearable
computer as a distributed, heterogeneous, body-area
computing system. Most of the nodes of such a com-
puting system will be WURM nodes, whereas some
nodes might be of the sub-notebook type or simply plain
sensor/actor nodes with fixed functionality. We propose
a distributed operating system layer for such a system,
that provides a global view of the computation and
communication resources and is aware of the current
high-level context as well as the user requests. An
important function of this system layer is to run appli-
cations on the different nodes. For this, the status of
each node must be monitored and hardware and soft-
ware tasks must be sent to the individual nodes.

As Figure 4 shows, we envision system and applica-
tion layers on top of the WURM-OS. The system layer
in this figure forms a part of the aforementioned dis-
tributed operating system. While these higher layers of
system software involve a number of challenging re-
search issues on their own, we focus on the lowest
software layer (WURM-OS) in this work.

4 The WURM prototype and experiments

We are implementing a WURM prototype to show that
reconfigurable hardware enables the construction of
small embedded wearable nodes that can deliver the
required performance at a high energy efficiency in a
flexible way. The WURM prototype is a functional
demonstrator and still a work in progress. For deploy-
ment in real-world wearable computers, the system can
be significantly reduced in size.

In the following sections, we present our prototyping
platform and a number of experiments toward ASICs-
on-demand and adaptive interfaces. Finally, we present
a prototype of WURM-OS for reconfigurable devices.

4.1 The WURM prototyping platform

Figure 5 shows the block diagram of the WURM pro-
totyping platform. The platform is based on the XESS
XSV800 board, which contains a Xilinx Virtex
XCV800–4 FPGA and a multitude of I/O facilities. To
connect sensors and actors, the XESS board offers a rich
set of general-purpose I/O (GPIO), serial and parallel
interfaces, a stereo audio codec and a video interface.
Further, the board provides physical drivers for Ether-
net, PS/2 and USB.

Instead of a dedicated processor, we use a soft CPU
core that is configured into the FPGA. This simplifies
the prototype and gives us the flexibility to experiment

with different ways of coupling the CPU with the re-
configurable modules. We can select from a broad range
of soft CPUs, from 8-bit microcontrollers [19] to 32-bit
RISCs running at 125 MHz [20]. While the CPU is
configured into the FPGA at power-on, the hardware
tasks are dynamically configured on demand. In our
current prototype, the configuration is controlled by a
host system via the parallel interface. In the future, we
plan to switch to one of the hybrid devices that integrate
a dedicated CPU and a reconfigurable array in a system-
on-chip, e.g., Xilinx Virtex-II Pro [9].

For wireless communication between the WURM
nodes, we have developed the Bluetooth module BTnode
[21]. The BTnode runs firmware that processes the lower
levels of the Bluetooth protocol stack autonomously and
thus relieves the CPU and the reconfigurable hardware
unit from implementing this protocol. Figure 6 shows a
picture of the WURM prototyping platform.

4.2 ASIC-on-demand

The computationally demanding applications inwearable
computing typically come from the domains of multi-
media, cryptography and communication. We have
analysed a set of 29 benchmark programs (MCCmix)
from these domains with a cycle-accurate CPU simulator

Fig. 5 A block diagram of the WURM prototyping platform

Fig. 6 The WURM prototyping platform
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and have derived instruction class mix and execution
statistics. The instruction class mix characterises the
programs according to the frequency of different
instruction types during execution. We have classified
the instructions according to their functionality into eight
instruction classes. Figure 7 illustrates the results for the
two instruction classes ‘‘integer arithmetic’’ and ‘‘logic’’.
The graphics show thepercentages of the instructionswith
respect to the total instruction count. The application
domains multimedia (MM), cryptography (CR) and
communication (CO) are highlighted and the averages for
these domains are drawn. The programs from the three
domains show quite different characteristics:

– The multimedia applications use many integer
arithmetic operations but few logic operations.

– The cryptography applications use many logic
operations and few branches.

– The communication applications use many branches
and few shift operations.

The different characteristics demonstrate that having
a computing element that flexibly adapts to the charac-
teristic of the running program is beneficial.

In order to identify the portions of code that should
go into the reconfigurable hardware, we have deter-
mined the kernels of the programs. Figure 8 shows the
relative runtimes of the two most runtime-intensive
functions for each application. It is notable that on
average the MCCmix applications spend 59% of their
runtime in the most runtime-intensive function, as op-
posed to only 19% for the SPECint95 benchmarks. The
detailed results of our analysis have been published in
[22].

For a detailed case study [23], we have chosen
adaptive differential pulse code modulation (ADPCM)
from our benchmark set. Decoding streams of audio and
video data is an important task required in many
wearable systems. Decoding, i.e., decompressing, such
streams is computationally expensive. Moreover, there
are many different audio and video formats and com-
pression algorithms in use. This combination of high
performance requirements and flexibility requires
ASICs-on-demand.

In the case study, we have designed a minimal
embedded WURM based on a general-purpose CPU
core, memories, a network interface and two ASICs-
on-demand, or coprocessors, for the playback of
compressed audio streams. Audio streams encoded in
different formats are sent as UDP packets via Ethernet
to the WURM node. The Ethernet media access
controller (MAC), implemented as a hardware task,
receives and buffers the packets. The UDP protocol is
executed on the CPU as a software task. The CPU
recognises the used encoding format and initiates the
dynamic configuration of the suitable audio decoding
coprocessor into the reconfigurable hardware unit.
When the audio coprocessor is in place, it receives the
encoded audio stream from the CPU. The audio

Fig. 7 Percentages of the instruction classes. a ‘‘Integer arithmetic’’
b ‘‘Logic’’ with respect to the total instruction count. The
application domains multimedia (MM), cryptography (CR), and
communication (CO) are highlighted Fig. 8 Kernel identification for wearable applications
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coprocessor decodes the audio stream and sends the raw
audio data for playback to the on-board digital-to-
analog converter. The CPU and coprocessor character-
istics are described as follows.

The soft CPU core used for this experiment is the
SPARC V8 compatible 32-bit LEON CPU [24]. The
CPU implements 2 KB of separated data and instruction
caches, a 256 byte internal boot-ROM and uses a 32-bit
external memory interface. The CPU core requires 3865
Virtex slices which amounts to 41% of the FPGA’s logic
resources, and 14 dedicated RAM blocks which equals
50% of the FPGA’s memory resources. Without hand
optimisation, the CPU runs at 25 MHz. The software
tasks are executed under the RTEMS real-time operat-
ing system kernel running on the LEON CPU.

We have implemented two audio decoding copro-
cessors, a PCM decoder and an Intel/DVI compliant
ADPCM decoder. The ADPCM core runs at 50 MHz
and uses 430 Virtex slices, or 4.5% of the FPGA’s re-
sources. The PCM decoder fits into 35 slices, or 0.4% of
the FPGA’s resources. All circuit design was done in
VHDL. Synopsys FPGA Express 3.6 and Xilinx Foun-
dation 4.1i tools were used for synthesis.

The software implementation of the ADPCM deco-
der needs 70 CPU cycles per sample. At a 25 MHz clock
frequency, this results in a decoding performance of 350
Ksamples/sec. The ADPCM hardware task decodes one
sample in five cycles. At a clock frequency of 25 MHz,
this results in a sustained decoding performance of 5
Msamples/sec. Hence, running the ADPCM decoder in
reconfigurable hardware yields a speedup of 14.

4.3 Adaptive interfaces

We have implemented several communication interfaces
as hardware tasks. These tasks differ strongly in their
complexity, ranging from simple UART and synchro-
nous serial interface (SSI) interfaces to an Ethernet
media access controller. Table 2 lists the typical sizes of
these tasks, measured in the number of Virtex slices. For
our WURM prototype, these cores occupy 0.4–7.3% of
the reconfigurable resources.

To demonstrate the feasibility of protocol stack
processing in reconfigurable hardware, we have devised
a minimal IP stack that handles the ARP, IP and UDP
protocols autonomously without intervention of the
CPU. Figure 9 shows the floor plan of the IP stack in the
FPGA.

As Figure 9 indicates, the IP stack splits into several
tasks. Each task implements a part of the protocol
handling. Due to their stringent timing requirements,
some tasks need to be permanently resident in the FPGA
while others can be loaded by the WURM-OS on de-
mand. For instance, the ‘‘Ethernet receiver’’ (Task 1 in
Figure 9) is highly time-critical as an average IP packet
of 500 bytes payload comes in within about 40 ls (100
Mbit/s Ethernet). With partial configuration times in the
range of milliseconds, the task could not be loaded fast

enough to capture the packet. In contrast, tasks han-
dling higher protocol layers such as ICMP and ARP are
not time-critical and can be loaded on demand.

In order to test the various communication interfaces
and protocol stacks, we have developed a WURM that
implements a reconfigurable Bluetooth/Ethernet bridge
[25]. The bridge provides an Internet access point for
Bluetooth devices. The node executes a number of
hardware tasks, among them a UART interface, an
Ethernet MAC and the minimal IP protocol stack
shown in Figure 9.

4.4 Toward a WURM-OS

WURM-OS divides the surface of the reconfigurable
device into two different types of regions: OS frame and
task slots. Figure 10 shows an example with four task
slots. The OS frame is loaded into the FPGA at system
startup and remains unchanged during the system’s
operation. The task slots are placeholders for applica-
tion tasks. The WURM-OS is partitioned between
hardware and software and is constituted by the circuits
running in the OS frame of the FPGA and control
software running on the attached CPU. The main
function of the control software is to schedule and load
tasks into the task slots during runtime. As all task slots
have the same size, a task can be loaded into any slot.

Fig. 9 The floorplan of the minimal IP stack

Table 2 Area requirements for communication tasks

Hardware task Area

UART [25] 100
SSI (PCM serialiser) [26] 38
Ethernet-MAC [25] 628
ARP (part of Ethernet-MAC) [25] 417
IP (Internet protocol) [25] 690
UDP (user datagram protocol) [25] 365
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To ensure the interoperability between the tasks and
the operating system, our design flow includes the
automatic generation of task templates. As shown in
Figure 11, a task template consists of three elements: the
task interface, the inter-frame communication channels
and the task circuit area. The task interface connects the
OS frame with the tasks. WURM-OS controls the tasks
via the task interface by issuing commands such as reset,
start, or stop. On the other hand, the tasks use the task
interface to demand WURM-OS services such as access
to buffers and connectivity to external devices. The inter-
frame communication channels route signals across the
device. Finally, the task circuit area is available for
application circuits.

To test the WURM-OS prototype, we have imple-
mented an application that processes a flow of incoming
IP data packets on a reconfigurable device with two task
slots. The application implements the minimal IP stack
and the audio decoder coprocessors described in the
previous sections as well as AES encryption and
decryption coprocessors. Figure 12 shows the network-
ing part of the application. As shown in the previous
section, the IP protocol handling splits into several tasks
that are coupled with FIFO buffers. Due to their strin-
gent timing constraints and importance to many appli-
cations, we have decided to make the tasks T1 (Ethernet
receiver) and T5 (Ethernet sender) part of the OS (similar
to device drivers in a software OS). Consequently, these
tasks are implemented inside the OS frame.

Incoming IP packets are captured and checked by
T1. If the MAC address and the frame checksum are
correct, the Ethernet receiver forwards the packets to
queue Q1. This generates an event to the WURM-OS
which subsequently leads to the loading of task T2 (the
packet discriminator/data extractor) into a free task
slot. T2 analyses the packet header. If the packet
contains an ARP request, the data is forwarded to
queue Q2 and task T3 is loaded. In case of an ICMP
request, the data is forwarded to queue Q4 and task T4

is loaded. Similarly, data for the encryption, decryp-
tion and audio decoder coprocessors is forwarded to
the appropriate queues.

5 Conclusions and future work

In this paper, we have made the case for reconfigurable
hardware in body area computing systems. We have
presented WURM, a concept and a prototype of a small
embedded wearable node that combines a CPU with a
reconfigurable hardware unit. Future work includes the
development of:

– a fully autonomous WURM node that receives tasks
via the wireless interface

– an extended WURM-OS that includes task and re-
source management for hardware and software
tasks, and

– a prototypical body area computing system consist-
ing of a main module and a number of WURM
nodes.
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signal transmission in wearables. In: Proceedings of the
Workshop on Modeling, Analysis and Middleware Support for
Electronic Textiles (MAMSET), San Jose, CA, 6 October 2002

5. Park S, Mackenzie K and Jayaraman S (2002) The wearable
motherboard: a framework for personalized mobile informa-
tion processing (PMIP). In: Proceedings of the 39th Design
Automation Confererence (DAC), New Orleans, LA, 10–14
June 2002

6. Herring C (2000) Microprocessors, microcontrollers, and sys-
tems in the new millennium. IEEE Micro 20(6):45–51

7. Brown S, Rose J (1996) FPGA and CPLD architectures: a
tutorial. IEEE Des Test Comp 13(2):42–57

8. Triscend Corp. (2001) Triscend E5 configurable system-on-chip
platform

9. Xilinx, Inc. (2002) Virtex-II Pro platform FPGA handbook
10. Mencer O, Morf M and Flynn MJ (1998) Hardware software

tri-design of encryption for mobile communication units. In:
Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Seattle, WA, 12–15
May 1998

11. Abnous A, Seno K, Ichikawa Y, Wan M and Rabaey J (1998)
Evaluation of a low-power reconfigurable DSP architecture. In:
Proceedings of the 5th Reconfigurable Architectures Workshop
(RAW), Springer Lecture Notes in Computer Science 1388:55–
60

12. Stitt G, Grattan B, Villarreal J and Vahid F (2002) Using on-
chip configurable logic to reduce embedded system software
energy. In: Proceedings of the 10th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa,
CA, 22–24 April 2002

13. Rabaey JM, Ammer MJ, da Silva Jr. JL, Patel D, and Roundy
S (2000) PicoRadio supports ad hoc ultra-low power wireless
networking. IEEE Comp 33(7):42–48

14. Liu Z, Wang Y and Chen T (1998) Audio feature extraction
and analysis for scene segmentation and classification. J VLSI
Sig Process 20(1/2):61–79

15. van Laerhoven K, Aidoo KA and Lowette S (2001) Real-time
analysis of data from many sensors with neural networks. In:
Proceedings of the 5th International Symposium on Wearable
Computers (ISWC), Zurich, Switzerland, 8–9 October 2001

16. Scalera S, Falco M and Nelson B (2000) A reconfigurable
computing architecture for microsensors. In Proceedings of the
8th IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), Napa, CA, 17–19 April 2000

17. Mignolet JY, Vernalde S, Verkest D and Lauwereins R (2002)
Enabling hardware-software multitasking on a reconfigurable
computing platform for networked portable multimedia
appliances. In: Proceedings of the 2nd International Conference
on Engineering of Reconfigurable Systems and Algorithms
(ERSA), Las Vegas, NV, 24–27 June 2002

18. Yau SS, Karim F (2001) Reconfigurable context-sensitive
middleware for ADS applications in mobile ad hoc network
environments. In: Proceedings of the 5th International Sym-
posium on Autonomous Decentralized Systems (ISADS),
Dallas, TX, 26–28 March 2001

19. Xilinx, Inc. (2002) PicoBlaze 8-bit microcontroller for Virtex
devices. Application Note XAPP213

20. Xilinx, Inc. (2002) MicroBlaze hardware reference guide
21. Beutel J, Kasten O, Ringwald M, Siegemund F and Thiele L

(2003) Bluetooth smart nodes for ad-hoc networks. TIK
Technical Report No. 167, Computer Engineering and Net-
works Lab, Swiss Federal Institute of Technology (ETH)
Zurich

22. Enzler R, Platzner M, Plessl C, Thiele L and Tröster G (2001)
Reconfigurable processors for handhelds and wearables:
application analysis. In: Proceedings of SPIE 4525:135–146

23. Dyer M, Plessl C and Platzner M (2002) Partially reconfigu-
rable cores for Xilinx Virtex. In: Field-programmable logic and
applications, Springer Lecture Notes in Computer Science
2438:292–301

24. Gaisler J (2001) The LEON processor user’s manual, Version
2.3.7, Gaisler Research

25. Lerjen M, Zbinden C (2002) Reconfigurable Bluetooth–Ether-
net bridge. Master’s thesis, Swiss Federal Institute of Tech-
nology (ETH)

26. Dyer M, Wirz M (2002) Reconfiguranle system on FPGA.
Master’s thesis, Swiss Federal Institute of Technology

308


