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changing from static, inanimate objects into
adaptive, reactive systems that can be more
friendly, useful, and efficient. Or, of course,
these new systems could be even more diffi-
cult to use than current systems; it depends
how we design the interface between the
world of humans and the world of this new
generation of machines.

To change inanimate objects like offices,
houses, cars, or glasses into smart, active help-
mates they need what I call “perceptual intelli-
gence.” Translated, perceptual intelligence is
paying attention to people and the surround-
ing situation in the same way another person
would, thus allowing these new devices to
learn to adapt their behavior to suit us, rather
than adapting to them as we do today.

This approach is grounded in the theory
that most appropriate, adaptive biological
behavior results from perceptual apparatus

classifying the situation correctly, which then
triggers fairly simple, situation-specific learned
responses. It is an ethological view of behavior,
and stands in strong contrast to cognitive the-
ories that hold that adaptive behavior is pri-
marily the result of complex reasoning
mechanisms.

From this theoretical perspective the prob-
lem with current computers is they are incred-
ibly isolated. If you imagine yourself living in a
closed, dark, soundproof box with only a tele-
graph connection to the outside world, you
can get some sense of how difficult it is for
computers to act intelligently or be helpful.
They exist in a world almost completely dis-
connected from ours, so how can they know
what they should do in order to be helpful?

In the language of cognitive science, percep-
tual intelligence is the ability to deal with the
frame problem: It is the ability to classify the
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nanimate things are coming to

life. However, these stirrings are

not Frankenstein or the

humanoid robots dreamed of 

in artificial intelligence laboratories.

This new awakening is more like Walt Disney: the simple objects that surround us are

gaining sensors, computational powers, and actuators. Consequently, desks and doors,

TVs and telephones, cars and trains, eyeglasses and shoes, and even the shirts on our backs are 

Good-bye keyboard, so long mouse. 

Hello smart rooms and clothes that recognize

acquaintances, understand speech, and 

communicate by gesture. 

And that’s just the beginning. . .

 



current situation, so that you know what variables are
important, and thus can take appropriate action.
Once a computer has the perceptual ability to know
who, what, when, where, and why, then I believe that
probabilistic rules derived by statistical learning
methods are normally sufficient for the computer to
determine a good course of action.

The key to perceptual intelligence is making
machines aware of their environment, and in particu-
lar, sensitive to the people who interact with them.
They should know who we are, see our expressions
and gestures, and hear the tone and emphasis of our
voice. People often confuse perceptual intelligence
with ubiquitous computing or artificial intelligence,
but in fact they are very different.

The goal of the perceptual intelligence approach is
not to create computers with the logical powers envi-
sioned in most AI research, or to have computers that
are ubiquitous and networked, because most of the
tasks we want performed do not seem to require com-
plex reasoning or a god’s-eye view of the situation.
One can imagine, for instance, a well-trained dog con-
trolling most of the functions we envision for future
smart environments. So instead of logic or ubiquity,
we strive to create systems with reliable perceptual
capabilities and the ability to learn simple responses. 

One implication of this approach is we often dis-
cover it is not necessary to have a general-purpose
computer in the system or to have the system net-

worked together with other resources. In fact, a design
goal that my research group usually adopts is to avoid
tight networking whenever possible. We feel that ubiq-
uitous networking and its attendant capacity to con-
centrate information has too close a resemblance to
George Orwell’s dark vision of a government observing
your every move. Instead, we propose that local intelli-
gence—mainly perceptual intelligence combined with
relatively sparse, user-initiated networking—can pro-
vide the same benefits as ubiquitously networked solu-
tions, while making it more difficult for outsiders to
track and analyze user behavior.

A key idea of perceptually intelligent interfaces is
they must be adaptive both to the overall situation
and to the individual user. As a consequence, much of
our research focuses on learning user behaviors, and
how user behavior varies as a function of the situa-
tion.  For instance, we have built systems that learn a
user’s driving behavior, thus allowing the automobile
to anticipate the driver’s actions, and a system that
learns typical pedestrian behaviors, allowing it to
detect unusual events [6].

Most recently, we have built audiovisual systems
that learn word meanings from natural audio and
visual input [7]. This automatically acquired vocabu-
lary can then be used to understand and generate spo-
ken language. Although simple in its current form,
this effort is a first step toward a more fully grounded
model of language acquisition. The current system
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Figure 1. These systems use 2D camera observations to drive a dynamic model of 
the human’s motion.  The dynamic model uses a control law that chooses typical

behaviors when it is necessary to choose among multiple physically possible trajectories. 
Predictive feedback from the dynamic model is provided by setting priors for the 

2D observation process.  These real-time systems have been successfully integrated into 
applications ranging from Becker’s physical rehabilitation trainer (using a 3D model)

to Sparacino’s computer-enhanced dance space (using 2.5D models) [12]

 



can be applied to human-computer interfaces that use
spoken input. A significant problem in designing
effective spoken word interfaces has always been the
difficulty in anticipating a person’s word choice and
associated intent. Our system addresses this problem
by learning the vocabulary choices of each user
together with the semantic grounding of the word.
This methodology is now used to build several practi-
cal systems, including adaptive human-machine inter-
faces for browsing, education, and entertainment.

To explore this vision of helpful, perceptually intel-
ligent environments my colleagues and I have created
a series of experimental testbeds at the MIT. Media
Laboratory. These testbeds can be divided into two
main types: smart rooms and smart clothes. The idea of
a smart room is a little like having a butler; that is, a
passive observer who usually stands quietly in the cor-
ner but who is constantly looking for opportunities to
help. Smart clothes, on the other hand, act more like
personal assistants. They are like a person who travels
with you, seeing and hearing everything you do, and
trying to anticipate your needs and generally smooth
your way.

Both smart rooms and smart clothes are instru-
mented with sensors that allow the computer to see,
hear, and interpret users’ actions (currently mainly
cameras, microphones, and electromagnetic field sen-
sors, but also biosensors like heartrate and muscle
action). People in a smart room can control pro-
grams, browse multimedia information, and experi-
ence shared virtual environments without keyboards,
special sensors, or special goggles. Smart clothes can
provide personalized information about the sur-
rounding environment, such as the names of people
you meet or directions to your next meeting, and can
replace most computer and consumer electronics.
The key idea is that because the room or the clothing
knows something about what is going on, it can react
intelligently.

Our first smart room was developed in 1989; now
there are smart rooms in Japan, England, and
throughout places in the U.S. They can be linked
together by ISDN telephone lines to allow shared vir-
tual environment and cooperative work experiments.
Our smart clothes project was started in 1992, and
now includes many separate research efforts.
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Figure 2. 

(top) The LAFTER system 
finds and tracks face and facial 

features at 30Hz, feeding 
facial feature geometry for

expression recognition; 
(bottom left) accurate, 

real-time recognition of a 
40-word American Sign 
Language vocabulary; 

(bottom  right) recognizing and
teaching T’ai Chi gestures.

 



Smart Rooms
Here, I describe some of the perceptual capabilities
available to our smart rooms, and provide a few
illustrations of how these capabilities can be com-
bined into interesting applications. This list of capa-
bilities is far from exhaustive; mostly it is a catalog of
our most recent research in each area.1

To act intelligently in a day-to-day environment,
the first thing you need to know is: where are the 
people? The human body is a complex dynamic sys-
tem, whose visual features are time varying, noisy sig-
nals. Accurately tracking the state of such a system
requires use of a recursive estimation framework. The
elements of the framework are the observation model
relating noisy low-level features to the higher-level
skeletal model and vice versa, and the dynamic skele-
tal model itself.

This extended Kalman filter framework reconciles
the 2D tracking process with higher-level 3D models,
thus stabilizing the 2D tracking by coupling an artic-
ulated dynamic model directly with raw pixel mea-
surements. Some of the demonstrated benefits of this
added stability include increase in 3D tracking accu-
racy, insensitivity to temporary occlusion, and the
ability to handle multiple people.

The dynamic skeleton model interpolates those
portions of the body state not measured directly, such
as the upper body and elbow orientation, by use of
the model’s intrinsic dynamics and the behavior (con-
trol) model. The model also rejects noise that is
inconsistent with the dynamic model. 

The system runs on a PC at 30Hz, and has per-
formed reliably on hundreds of people in many dif-
ferent physical locations, including exhibitions,
conferences, and offices in several research labs. The
jitter or noise observed experimentally is 0.9cm for 3-
D translation and 0.6 degrees for 3D rotation when
operating in a desk-sized environment.
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Figure 3. Toco the Toucan. This computer graphics demonstration of 
word and gesture earning for human-machine interactions was called “one of the best 

demos at SIGGRAPH ‘98 ” by the Los Angeles Times.

1
Readers are referred to conferences such as the IEEE International Conference on

Automatic Face and Gesture Recognition for related work by other research laborato-
ries.

 



One of the main advantages of feedback from a 3D
dynamic model to the low-level vision system. Without
feedback, the 2D tracker fails if there is even partial self-
occlusion from a single camera’s perspective. With
feedback, information from the dynamic model can be
used to resolve ambiguity during 2D tracking [12].

Once the person is located, and visual and auditory
attention has been focused on them, the next question
to ask is: who is it? The question of identity is central to
adaptive behavior because who is giving a command is
often as important as the command itself. Perhaps the
best way to answer the question is to recognize them by
their facial appearance and by their speech. 

Face recognition systems in use today are real-time
and work well with frontal mug-shot images and con-
stant lighting.  For general perceptual interfaces, per-
son recognition systems will need to recognize people
under much less constrained conditions.

One method of achieving greater generality is to
employ multiple sensory inputs; audio- and video-
based recognition systems in particular have the criti-

cal advantage of using the same
modalities that humans use for
recognition. Recent research has
demonstrated that audio- and video-
based person identification systems
can achieve high recognition rates
without requiring a specially con-
strained environment [1].

Facial expression is also critical.
For instance, a car should know if
the driver is sleepy, and a teaching
program should know if the student
looks bored. So, just as we can rec-
ognize a person once we have accu-
rately located their face, we can also
analyze the person’s facial motion to
determine their expression. The lips
are of particular importance in inter-
preting facial expression, and so we
have focused our attention on track-
ing and classification of lip shape.

The first step of processing is to
detect and characterize the shape of
the lip region. For this task we devel-
oped the LAFTER system [5].  This
system uses an online learning algo-
rithm to make maximum a posteriori
(MAP) estimates of 2D head pose
and lip shape, runs at 30Hz on a PC,
and has been used successfully on
hundreds of users in many different
locations and laboratories. Using lip
shape features derived from LAFTER

we can train hidden Markov models (HMMs) for var-
ious mouth configurations. HMMs are a well-devel-
oped statistical modeling technique for modeling time-
series data, and are used widely in speech recognition.
Recognition accuracy for eight different users making
over 2,000 expressions averaged 96.5%

We have used the recovered body geometry for sev-
eral different gesture recognition tasks, including a
real-time American Sign Language reader and a sys-
tem that recognizes T’ai Chi gestures, and trains the
user to perform them correctly. Typically these sys-
tems have a gesture vocabularies of 25 to 50 gestures,
and recognition accuracies above 95% [9].

In our first systems we used HMMs to recognize
hand and body gestures. We found that although
HMMs could be used to obtain high accuracy gesture
recognition, they also required a labor-intensive
period of training. This is because using HMMs to
describe multipart signals (such as two-handed ges-
tures) requires large amounts of training data.

To improve this situation, we developed a new
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Figure 4. The author wearing a variety of new devices. 
The glasses (built by Microoptical, Boston) contain a computer

display nearly invisible to others. The jacket has a keyboard 
literally embroidered into the cloth. The lapel has a context 
sensor that classifies the user’s surroundings. And, of course,

there’s a computer (not visible in this photograph). 
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method of training a more general class of HMM,
called the “Coupled Hidden Markov Model.” Cou-
pled HMM’s allow each hand to be described by a
separate state model, and the interactions between
them to be modeled explicitly and economically. The
consequence is that much less training data is
required, and the HMM parameter estimation

process is much better conditioned [6].
Almost every room has a chair, and body posture

information is important for assessing user alertness
and comfort. Therefore, our smart chair senses the
pressure distribution patterns in the chair and classi-
fies the seating postures of its user (See Tan below).
Two Tekscan sensor sheets (each consisting of a 42-
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The term “haptics” refers to sensing and manipula-
tion through the sense of touch. Although the

word haptics may be new to you, chances are that
you’re already using haptic interfaces (for example,
your keyboard and mouse). As Figure 1 shows, the
haptic sensory system (or taction) is usually regarded
as having two components: tactile (or cutaneous)
sensing, and kinesthetic sensing (or propriocep-
tion). Tactile sensing refers to an awareness of
stimulation to the outer surface of the body (the
softness of a blanket). Kinesthetic sensing refers
to an awareness of limb position and movement
(for example, an ability to touch your nose with
your eyes closed), as well as muscle tension (for
example, estimation of object weights) [1]. Unlike
vision and audition that are mainly input systems
for the human observer, the haptic system is bidi-
rectional. Many activities, such as the reading of
Braille text by the blind, require the use of both the
sensing and manipulation aspects of the haptic
system.

Of the five major human senses—vision, audition,
taction, olfaction, and gustation—only the first three
have been engaged in most human-machine interface
research. Of these three, a disproportional majority of
work has been conducted on visual and auditory sys-
tems. Historically, work on haptic display has been
motivated by the desire to develop sensory-substitu-
tion systems for the visually or hearing impaired.
Examples include the Optacon (Telesensory Corp.,
Mountain View, Calif.,), a reading aid for the blind [4];
and TactaidVII (Audiological Engineering Corp.,
Somerville, Mass.,), a hearing aid for the deaf [6].

These systems can be characterized by an array of
vibrators that transform optical or acoustic energy
into spatial vibrational patterns. In the past two
decades, force-feedback devices (a type of kines-
thetic display) have played an important role in tele-
operation and virtual reality systems by improving an
operator’s task performance and by enhancing a
user’s sense of telepresence. Examples include the
Impulse Engine™ (Immersion Corp., San Jose, Calif.)
and the popular PHANToM™ (SensAble Technologies
Inc., Cambridge, Mass.) [5].

Depending on the direction of information flow
(see Figure 2), a human observer would either regard
a haptic interface as a display (for example, Opta-
con, TactaidVII, Impulse Engine, and PHANToM) or a

controller (computer mouse). A computer would
either render a haptic world through devices such as
the PHANToM, or perceive haptic information through
contact sensors. An example of a haptic perceptive UI
is the sensing chair. Originally conceived at the MIT
Media Lab and currently being developed at Purdue
University, the sensing chair project is aimed toward
a real-time system that tracks the sitting postures of
a user through the use of surface-mounted contact
sensors (enclosed in the green protective pouches as
shown in Figure 3). The realization of a robust track-
ing system will lead to many exciting applications

Haptic Interfaces

Tactile Kinesthetic
(position/force)

Figure 1. Definition of haptics.

B R A I L L E

Sensing Manipulation

HAPTICS

� Hong Z. Tan

Creating interfaces that envelop a sense of

touch has met with measured success.

 



by-48 array of force-sensitive resistor units) are
mounted to the seatpan and the backrest of the chair
and output 8-bit pressure distribution data. This data
is collected and the posture is classified using image
modeling and classification algorithms. 

The current version of the real-time seating posture
classification system uses a statistical classification

method originally developed for face recognition. For
each new pressure distribution map to be classified, a
“distance-from-feature-space” error measure is calcu-
lated for each of the M postures and compared to a
threshold. The posture class that corresponds to the
smallest error is used to label the current pressure
map, except when all error values exceed the threshold
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such as automatic control of airbag
deployment forces, ergonomics of
furniture design, and biometric
authentication for computer 
security.1

Despite the progress made in the
past two decades (see Srinivasan in
[3]), haptic interfaces have not yet
become commonplace. One reason,
I think, is the technological chal-
lenge associated with the design
and fabrication of interfaces that
make physical contact with human
users. This, however, will change as
haptic technology matures. The
other reason is the lack of killer
apps for haptic user interfaces. 

To really appreciate the human haptic sensory sys-
tem requires an understanding of what happens if we are
deprived of it. Imagine what happens if one loses the
tactile sense. We have all experienced the lack of dex-
terity with a gloved hand. What happens if one loses the
kinesthetic sense? Such cases are rare, but one is well
documented in Cole’s book on Ian Waterman who, at the
age of 19, lost all sensation below his neck [2]. Without
that sixth sense of joint and limb positions in space, he

fell on the floor in a heap, unable to stand or walk. With
sheer courage and determination, Waterman eventu-
ally taught himself to walk again by constant visual
monitoring of his body position. However, as Cole
pointed out, Waterman’s new way of walking was like “a
wooden puppet activated by a novice.” It lacked the
grace observed in our movements of walking, dancing,
and running.

The fact that Waterman could walk at all with visual
feedback alone attests to our ability to accomplish
almost any task with vision. The fact that he could no

longer walk gracefully suggests to me that
perhaps the killer app of haptic interfaces is
to make human-computer interactions
more intuitive, natural, and above all,
graceful.  
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Figure 2. Information flow with haptic interfaces.

1
It is much easier to change one’s appearance or voice than to fake the distance

between the ischial tuberosities (sitting bones), something that is readily detectable
by our chair sensors.
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(Top left) The Stochasticks
wearable billiards advisor
(photo by Sam Ogden); 
(right) what the Stochasticks
user sees; (bottom) a 
hat-mounted camera
observers the user’s hands 
and translates a limited set 
of American Sign Language
into English.

Figure 5.

 



in which case the current posture is declared
unknown. The algorithm runs in real-time on a Pen-
tium PC, with a classification accuracy of approxi-
mately 95% for 21 different postures.

Traditional interfaces have hard-wired assumptions
about how a person will communicate. In a typical
speech recognition application the system has some
preset vocabulary and (possibly statistical) grammar.
For proper operation the user must restrict what is
said to words and vocabulary built into the system.
However, studies have shown that in practice it is dif-
ficult to predict how different users will use available
input modalities to express their intents. For example,
Furnas et al. did a series of experiments to see how
people would assign keywords for operations in a
mock interface [2]. They conclude that: “There is no
one good access term for most objects...The idea of an
“obvious,” “self-evident,” or “natural” term is a myth!
... Even the best possible name is not very useful...Any
keyword system capable of providing a high hit rate
for unfamiliar users must let them use words of their
own choice for objects.” Our conclusion is to make
effective interfaces there need to be adaptive mecha-
nisms that learn how individuals use modalities to
communicate. 

Therefore, we have built a trainable interface,
which lets users teach it which words and gestures
they want to use and what the words and gestures
mean. Our current work focuses on a system that
learns words from natural interactions; users teach the
system words by simply pointing to objects and nam-
ing them. 

This work demonstrates an interface that learns
words and their domain-limited semantics through
natural multimodal interactions with people. The
interface, embodied as an animated character named
Toco the Toucan, can learn acoustic words and their
meanings by continuously updating association
weight vectors that estimate the mutual information
between acoustic words and attribute vectors repre-
senting perceptually salient aspects of virtual objects
in Toco’s world. Toco is able to learn semantic associ-
ations (between words and attribute vectors) using
gestural input from the user. Gesture input enables
the user to naturally specify which object to attend to
during word learning [7] 

Smart Clothes
In the smart room, cameras and microphones are
watching people from a third-person perspective.
However, when we build the computers, cameras,
microphones and other sensors into our clothes, the
computer’s view moves from a passive third person
to an active first-person vantage point. 

This means smart clothes can be more intimately
and actively involved in the user’s activities. If these
wearable devices have sufficient understanding of the
user’s situation—-that is, enough perceptual intelli-
gence—then they should be able to act as an intelli-
gent personal agent, proactively providing the wearer
with information relevant to the current situation.

For instance, if you build a global position sensor
(GPS) into your belt, then navigation software can
help you find your way around by whispering direc-
tions in your ear or showing a map on a display built
into your glasses. Similarly, body-worn accelerometers
and tilt sensors can distinguish walking from standing
from sitting, and biosensors such as galvanic skin
response (GSR) are correlated with mental arousal,
allowing construction of wearable medical monitors.
A simple but important application for a medical
wearable is to give people feedback about their alert-
ness and stress level. More advanced applications,
being developed in conjunction with the Center for
Future Health at the University of Rochester, include
early warning systems for people with high-risk med-
ical problems, and eldercare wearables to help keep
seniors out of nursing homes. 

These wearable devices are examples of personal-
ized perceptual intelligence, allowing proactive fetching
and filtering of information for immediate use by the
wearer. The promise of such wearable devices recently
motivated the IEEE Computer Society to create a
Technical Committee on Wearable Information
Devices (see iswc.gatech.edu).

While specialized sensors such as GPS, accelerome-
ters, and biosensors may predominate in initial wear-
able applications, audio and video sensors will soon
play a central role. For instance, we have built wear-
ables that continuously analyze background sound to
detect human speech. Using this information, the
wearable is able to know when you and another person
are talking, so that they won’t interrupt (imagine hav-
ing polite cell phones!)  Researchers in my laboratory
are now going a step further, using microphones built
into a jacket to allow word-spotting software to analyze
your conversation and remind you of relevant facts. 

Cameras make attractive candidates for a wearable,
perceptually intelligent interface, because a sense of
environmental context may be obtained by pointing
the camera in the direction of the user’s gaze. For
instance by building a camera into your eyeglasses,
face recognition software can help you remember the
name of the person you are looking at [4, 10].

A more mathematically sophisticated example is to
have the wearable computer assist the user by suggest-
ing possible shots in a game of billiards. Figure 5, for
instance, illustrates an augmented reality system that
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helps the user play billiards. A camera mounted on the
user’s head tracks the table and balls, estimates the 3D
configuration of table, balls, and user, and then creates
a graphics overlay (using a see-though head-mounted
display) showing the user their best shot [3].

In controlled environments, cameras can also be
used for object identification. For instance, if objects
of interest have bar code tags on a visible surface, then
a wearable camera system can recognize the bar code
tags in the environment and provide the user with
information about the tagged objects [8].

If the user also has a head-mounted display, then
augmented reality applications are possible. For
instance, by locating the corners of a 2D tag the rela-
tive position and orientation of the user and tag can be
estimated, and graphics generated that appear to be
fixed to the tagged object in the 3D world.  Multiple
tags can be used in the same environment, and users
can add their own annotations to the tag database. In
this way, the hypertext environment of the Web is
brought to physical reality. Such a system may be used
to assist in the repair of annotated machines such as
photocopiers or provide context-sensitive information
for museum exhibits. Current work addresses the
recognition and tracking of untagged objects in the
office and outside environments to allow easy, socially
motivated annotation of everyday things.

Perhaps just as important but less obvious are the
advantages of a self-observing camera.  In Figure 5, a
downward-pointing camera mounted in a baseball
cap allows observation of the user’s hands and feet.
This view permits the wearable computer to follow
the user’s hand gestures and body motion in natural,
everyday contexts. If the camera is used to track the
user’s hand, then the camera can act as a direct-
manipulation interface for the computer [4, 10].
Hand tracking can also be used for recognizing Amer-
ican Sign Language or other gestural languages. Our
most recent implementation recognizes sentence-level
American Sign Language in real time with over 97%
word accuracy on a 40-word vocabulary [9]. Interest-
ingly, the wearable sign-language recognizer is more
accurate than the desk-mounted version, even though
the algorithms are nearly identical.

Conclusion
It is now possible to track people’s motion, identify
them by voice and facial appearance, and recognize
their actions in real time using only modest compu-
tational resources. By using this perceptual informa-
tion we have been able to build smart rooms and
smart clothes that can recognize people, understand
their speech, allow them to control information dis-
plays without mouse or keyboard, communicate by

facial and hand gesture, and interact in a more per-
sonalized, adaptive manner.

We are now beginning to apply such perceptual
intelligence to a much wider variety of situations. For
instance, we are now working on prototypes of dis-
plays that know if you are watching them, credit cards
that recognize their owners, chairs that adjust to keep
you awake and comfortable, and shoes that know
where they are. We imagine building a world where
the distinction between inanimate and animate
objects begins to blur, and the objects that surround
us become more like helpful assistants or playful pets
than insensible tools.

Portions of this article have appeared in Scientific American and Scientific
American Presents and in the ACM International Symposium on Handheld
and Ubiquitous Computing, 1999.
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