
 396

Meta-Design: Design for Designers

Gerhard Fischer
Center for LifeLong Learning and Design (L3D)

Department of Computer Science and
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430 USA

gerhard@cs.colorado.edu

Eric Scharff
Center for LifeLong Learning and Design (L3D)

Department of Computer Science and
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430 USA

scharffe@cs.colorado.edu

ABSTRACT
One fundamental challenge for the design of the interactive
systems of the future is to invent and design environments and
cultures in which humans can express themselves and engage in
personally meaningful activities. Unfortunately, a large number of
new media are designed from a perspective of viewing and
treating humans primarily as consumers. The possibility for
humans to be and act as designers (in cases in which they desire
to do so) should be accessible not only to a small group of “high-
tech scribes,” but rather to all interested individuals and groups.
Meta-design characterizes activities, processes, and objectives to
create new media and environments that allow users to act as
designers and be creative.

In this paper we discuss problems addressed by our research on
meta-design, provide a conceptual framework for meta-design,
and illustrate our developments in the context of a particular
system, the Envisionment and Discovery Collaboratory.

Keywords
Consumer and designer mindsets; designing “out of the box,”
domain-oriented design environments; open evolvable systems;
Open Source; seeding, evolutionary growth, reseeding model;
impact of new media on design; underdesigned systems.

1. INTRODUCTION
Cultures are substantially defined by their media and their tools
for thinking, working, learning, and collaborating. A large number
of new media are designed to see humans only as consumers.
Television is the most obvious medium that promotes this mindset
and behavior [33] and contributes to the degeneration of humans
into “couch potatoes”— individuals for whom passive
consumption dominates, and activity, both physical and
intellectual, is limited [13].

Unfortunately, a consumer mindset does not remain limited to
television; in many cases it is a model dominating our culture. In
our educational institutions learners are often treated as

consumers, which creates a mindset of consumerism for the rest of
their lives [15, 23]. Citizens often feel left out of decisions by
policy makers, denying them opportunities to take an active role.
Computational media have the unique potential to let people be
designers or to assist them to incrementally become designers.
Unfortunately, most current computational environments do not
allow users to act as contributors and designers [12].

A Chinese proverb says: “If you give a fish to a human, you will
feed him for a day—if you give someone a fishing rod, you will
feed him for life.” This saying can be extended by arguing that “if
we can provide someone with the knowledge, the skill, and the
tools for making a fishing rod, we can feed the whole
community." Meta-design characterizes activities, processes, and
objectives to create new media and environments that allow users
to act as designers and be creative. This can be compared with the
objective in art that focuses on the artist as the facilitator of the
creative experience for users. In our work, we have explored a set
of concepts and ideas for meta-design that are summarized in
Figure 1.

This paper first presents problems at a technical and cultural level
that are addressed by a meta-design approach. Then a conceptual
framework for meta-design is outlined, including a brief
characterization of meta-design tools and environments and a
process model supporting meta-design. The Envisionment and
Discovery Collaboratory (EDC) serves as an example for a system
instantiating designing “out of the box” and illustrating the needs
and possibilities for meta-design approaches. A brief assessment
section based on the work so far articulates some of the major
challenges for the future.

2. PROBLEMS
2.1 Shortcoming of Closed Systems
Closed systems typically create a sharp separation between the
creation and use of the system. Providing functionality of
collaborative human-computer systems that is fixed when the
system is created has important implications on how it will be
used. However, designing a system that can sufficiently anticipate
all possible uses in advance (that is, when the system is created) is
an impossible task [20, 42]. An important attribute of real
software systems is that 40 to 60 percent of a system’s cost over
its lifetime is spent after the original system design is finished [7].
Sustaining the usefulness of software systems differs from the
traditional concept of “maintenance” because beyond repairing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DIS ’00, Brooklyn, New York.
Copyright 2000 ACM 1-58113-219-0/00/0008…$5.00.

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 397

defects and fixing bugs, most of the efforts (an estimated 75
percent of the overall maintenance efforts) involve enhancement
activities. The needs for enhancements are noticed in most cases
by skilled domain workers using these systems rather than by the
system designers.

In the domain of urban planning, SimCity [27] provides an
interesting example of a closed system that exemplifies some of
the problems encountered when attempting to design with these
systems. Although SimCity provides some superficial kinds of
modifications (such as changing the appearance of buildings in
the city), most aspects of the simulation environment have been
determined by the designers. For example, the only way to reduce
crime in a simulated city is to add more police stations. It is
impossible to explore other solutions, such as increasing social
services. The functionality of the system was fixed when the
system was created, so exploring concepts that were never
conceived by the system designers is difficult. Because of its
closed nature, SimCity may make be a good tool for education or
entertainment, but it is inadequate for actual city planning tasks.
To support city planning, a system such as SimCity would need to
be extended to represent the various kinds of situations
encountered in urban planning design tasks.

Of course, it is possible to consider adding functionality to
SimCity while maintaining its “closed” status, such as creating a
new version. This does not address the fundamental problem with
this approach, which is that activities and issues may arise that
cannot be represented by the system. When closed systems lack
the ability to evolve so that they can be modified to address
unanticipated issues, they will inevitably be unable to cope with
change and the possibly unlimited extensions that might arise in
the design process.

Open, evolvable systems address the limitations often associated
with closed systems. Open systems allow significant
modifications when the need arises. The evolution that takes place
through modifications is a “first class design activity.” That is, it
is important not only to allow people to design within a domain,
but to be able to design modifications to the current realization of
the domain when necessary. The need for open, evolvable systems
was eloquently advocated by Nardi [29]: “We have only
scratched the surface of what would be possible if end users could
freely program their own applications.... As has been shown time
and again, no matter how much designers and programmers try
to anticipate and provide for what users will need, the effort
always falls short because it is impossible to know in advance
what may be needed... End users should have the ability to create
customizations, extensions, and applications.... {p. 3}”

In purely technical domains, Open Source Software [30] has
emerged as an interesting example of successful open systems.
Powerful tools such as the Linux operating system and the Apache
Web server have become both useful and reliable in large part

because of the evolutionary contributions of a large community of
motivated developers. In Open Source Software, the source code
for a computer system is available to a broad group of individuals,
often anyone interested in obtaining it. Because developers can
modify the source directly, they can make changes to the systems
and, assuming they have the adequate motivation and technical
competency, they can extend a system to fit their unique
problems. Open Source Systems have also been encouraged by
the development of the Internet and the Web, making it much
easier for widely distributed communities to share their
extensions. Open Source Software gives developers the power
they need to extend systems. Creating open systems for non
technical domains is an important challenge. Open systems have
been successful when technically oriented people create
technically oriented software, but it is also important to support
users not motivated simply by technology in domains that do not
involve the creation of technical artifacts.

2.2 The Consumer Mindset
Supporting people in taking an active role in the design processes
that shape their lives implies that people wish to engage in this
activity. Having a desire to become involved in the design
activities that shape your life, ranging from participating in
neighborhood planning groups to becoming active in knowledge
sharing communities, requires having the motivation to take part
in such activities. One of the critical preconditions for this
motivation is a cultural mindset in which participation plays a
major role. In short, taking an active role in design needs to be
supported by the creation of a “designer mindset.”

Although new technologies have the potential to move beyond the
paradigm of consumption, many new technologies have adopted a
similar role. Even the Web, which has been a successful medium
in allowing anyone to distribute their own content, is based on a
consumer mindset. Typically, someone will create a Web site and
publish (or broadcast) this site to the world. People browsing the
Web can receive this content, but they can rarely change the
content provided. Personalized information has become more
common recently, giving viewers more control over the
information presented, but users still consume most information,
and producing new information is limited. It is not surprising that
a term such as “Web surfing” is similar to the television-oriented
“channel surfing.”

To create designer mindsets, one of the major roles for new media
and new technologies is not to deliver predigested information to
individuals, but to provide the opportunity and resources for
social debate, discussion, and collaborative knowledge
construction. In many design activities, learning cannot be
restricted to finding knowledge that is “out there.” For most
design problems (ranging from urban design to graphics design
and software design) that we have studied over many years, the
knowledge to understand, frame, and solve problems does not

Concept Implications

convivial tools allow users to invest the world with their meaning and to use tools for the
accomplishment of a purpose they have chosen [24]

domain-orientation bring task to the forefront; provide time on task [11]

open, evolvable systems put owners of problems in charge [18]

underdesigned systems create seeds and constructs for design elaboration at use time [14]

collaborative work practices support design communities and the emergence of power users [29]

Figure 1: Concepts of Meta-Design

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 398

exist; rather it is constructed and evolved during the process of
solving these problems, exploiting the power of the “symmetry of
ignorance” [39] and “breakdowns” [17, 40]. From this
perspective, access to existing information and knowledge (often
seen as the major advance of new media) is a very limiting
concept [2, 5, 32].

3. CONCEPTUAL FRAMEWORKS FOR
META-DESIGN
Our belief is that providing the opportunity for people to become
designers is both important and rewarding. People have incredible
capabilities when they adopt a designer role, and, under the right
circumstances, people want to be and act as designers. In this
context, “design” is a broad notion that involves activities in
which a person wishes to act as an active participant and
contributor in personally meaningful activities. Of course, not
everyone wants to be a designer, we are not designers all the time
and in all contexts. However, when people have the need and
desire to participate in a design process, we must provide contexts
in which they can be designers. Illich [24] (sharing this premise)
has articulated the need for convivial tools and systems, which he
characterized as follows: “convivial tools allow users to invest the
world with their meaning, to enrich the environment with the
fruits of their vision and to use them for the accomplishment of a
purpose they have chosen” (emphasis added). Convivial systems
encourage users to be actively engaged in generating creative
extensions to the artifacts given to them and have the potential to
break down the strict counterproductive barriers between
consumers and designers. What are the challenges involved in
designing tools that support people in their design activities?

3.1 Design Time and Use Time
The need for meta-design is founded on these observations:
design problems in the real world require open systems that users
can modify and evolve. Because problems cannot be completely
anticipated at design time (when the system is developed), users at
use time will discover mismatches between their problems and the
support a system provides.

One of the fundamental problems of system design is how to write
software for millions of users (at design time), while making it
work as if it were designed for each individual user (who is
known only at use time) [16]. Figure 2 differentiates between two
stages in the design and use of a system. At design time,
developers create systems, and they have to make decisions for
users for situational contexts and for tasks that these designers can
only anticipate. For print media, a fixed context is decided at
design time, whereas for computational media, the behavior of a
system at use time can take advantage of contextual factors (such
as the background knowledge of a user, the specific goals and
objectives of a user, the work context, etc.) known only at use
time. The fundamental difference is that computational media
have interpretive power: they can analyze the artifacts created by
users and the interaction patterns between users and system, and
they can support users in their articulation of additional
contextual factors.

end usersystem developer user (representative)

key

design
time

use
time

time

Figure 2: Design and Use time

3.2 The Spectrum of Meta-Design Tools
It is fair to wonder why current interactive programming
environments, such as Lisp, Logo, and Smalltalk, are not ideal for
supporting this meta-design. After all, these tools provide the
ultimate level of openness and flexibility. For example, Squeak
[25] is an Open Source [30] implementation of Smalltalk written
entirely in itself. As a general-purpose programming language, it
is capable of representing any problem that computers can be used
to solve. As an open system, any user can change any aspect of
the system if necessary, allowing for unlimited extension.

Although systems such as this are useful as computational
substrates, by themselves they are insufficient for meta-design.
The essential problem with these systems is that they provide the
incorrect level of representation for most problems. Expressing a
problem and designing a solution in these systems requires
creating a mapping from the context of the problem to the core
constructs provided by the programming language and its
supporting library.

On the other side of the spectrum, domain-specific tools such as
SimCity provide extensive support for certain problem contexts.
SimCity 3000, the latest in the SimCity series, has mechanisms to
construct and manipulate many parameters of a city. Users can
manipulate zoning (determining the purpose for which a specific
plot of land should be used), finance, transportation, electricity,
water, even sanitation (sewage and garbage disposal). However,
as we discussed previously, the ability to extend these
environments is often limited. SimCity provides some
mechanisms for change with the SimCity Urban Renewal Kit
(SCURK, now known as the Building Architect Tool, BAT).
SCURK and BAT allow users to change the appearance of
buildings, but these changes are limited to on-screen appearance.
The behavior and semantics of the buildings remains unchanged.
If the system provides all the necessary capabilities to design an
artifact, then a closed domain-specific tool may provide adequate
support for certain design activities but not others. Even minor
incremental changes may not be possible in these systems.

Many systems fall between these two extremes. Domain-oriented
design environments (DODEs; described in detail below) are tools
that allow users to construct artifacts within the confines of a
specific domain. Users can construct new designs, modify existing
ones, and extend the underlying domain framework. Microsoft
Word provides a great deal of support for creating and
manipulating documents. It also provides mechanisms for
extending the existing functionality of the system. AgentSheets
[36, 37] is an end-user simulation programming tool that
combines the concepts of autonomous computational entities

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 399

(agents) and the metaphor of the grid (spreadsheets). Users create
and program agents that interact within a grid-based environment.
Thus, AgentSheets provides a high degree of programmability
while attempting to remain domain-neutral, being capable of
representing tasks that can be modeled using a discrete grid.

SimCity (with parameter
setting and SCURK)

MS-Word (with Macros and
embedded Visual Basic)

Envisionment and Discovery Collaboratory and
Domain-Oriented Design Environments (with

behavior articulation such as user-defined critics
and high-level specification components)

AgentSheets (with
Visual AgenTalk)

Squeak (with
Smalltalk

Programming)

Domain Specificity

U
se

fu
ln

es
s,

 O
pe

nn
es

s

low high

low

high

Figure 3: Spectrum of Design Tools

Figure 3 briefly summarizes the spectrum of tools that can be used
for meta-design (similar classifications can be found in [26], [29],
and [37]). Increasing domain specificity allows environments to
provide greater support in solving problems within a given
context, but limits the scope of the context that can be explored.
Increasing the facilities for extension allow users to modify an
environment to fit a new context, but extending the environment
involves an ever-increasing gap between the context in which the
design is taking place and the ability of a system to represent that
context. It is apparent from analyzing the spectrum of design tools
that no single point on the spectrum is ideal for all contexts.
Therefore, being able to move smoothly along the spectrum is an
important aspect of supporting meta-design.

3.3 The Seeding, Evolutionary Growth,
Reseeding (SER) Model
In the context in which designers can create and extend a system
over time, it is valuable to understand how a system is
transformed over time. We have developed the seeding,
evolutionary growth, reseeding (SER) model to help explain how
meta-design systems can be understood [14]. The SER model
helps explains how open systems can develop over time.

In the SER model, system developers and users (see Figure 2)
develop an initial seed, which is a first attempt at creating a tool to
support work within a specific domain. An important aspect of
this seed is that it is designed to be extended. Because it is
impossible to capture any design activity completely, the seed
must be able to grow through use. In this way, a seed can be
initially underdesigned [4], meaning that at design time the
environment designers do not create final solutions but rather
design spaces that can be changed and modified by domain
designers at use time. As the seed is used for real design activity,
it goes through a period of evolutionary growth in which the
designers make incremental modifications to the system over time.

Because evolution happens at the hands of the users, there must
be mechanisms that allow users to make necessary changes. This
implies that a system is open, so that modifications are possible,
and that there are extension facilities that make extension
capability available to designers without making a significant leap
from domain work.

Eventually, it will become necessary to do a significant
reconceptualization of the system, or reseeding. There are many
reasons why reseeding is necessary, including the possibility that
some incremental changes may point out fundamental limitations
in the seed, managing and combining many incremental changes
may be difficult, and some incremental changes may make future
changes more difficult. Reseeding is a complex process by which
a group of people must take stake in the current system,
synthesize the current state of the system, and reconceptualize the
system. The result of the reseeding process is a new system that
can serve as the basis for future evolution. The cycle of evolution
and reseeding continues as there are people actively using the
system to solve problems.

The SER model can be used to understand how meta-design
activity can take place. Open Source Software development
follow the patterns detailed in the SER model. When designing
and understanding Open systems, an understanding of the
lifecycle of a system can be informative in determining what is
important, and is thus a rubric for meta-design. A seed must
provide the facility for people to design artifacts within a domain,
but must be able to evolve over time. The system evolves as new
situations reveal themselves and the system is extended or refined
to handle these new situations. Incremental evolution cannot
happen forever and it will be necessary to reconceptualize a
system to create some order to the emergent changes and to
facilitate future extension to the system.

Decentralizing evolution [38] is an important goal, but it also may
present serious difficulties. When people make incremental
modifications in their own contexts, these changes may not work
with the changes made by others in different contexts, making
sharing difficult. Keeping track of a large community so that
different people don’t come up with similar changes that are
incompatible with each other is difficult. In Open Source
Software, there is typically a centralized authoritative version of a
system. Contributions to this core version are managed by a gate-
keeper, either an individual or group. This centralized integration
helps reduce the likelihood of incompatible changes. Determining
whether an incremental change should become a “core” part of a
system must be decided by some group of people, raising an issue
about who controls a system. Open Source projects tend to have
one project leader (or a small group of leaders) who have the
ultimate say over what is a “central” part of a system. One might
assume that this would lead to a totalitarian control over
evolution, but this is rarely observed. Often a core group of
motivated individuals will discuss changes. If they are pleased
with the extensions (and adopt the extension themselves) there is
a good chance that they will become a core part of the system.
Sometimes, new situations will reveal situations in which
incremental modifications are impossible, requiring a paradigm
shift. In all of these cases, the community must make a conscious
effort to reseed a system to address these major concerns.
Determining who should be involved in this reseeding and how it
should take place is an important and sensitive issue.

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 400

A closer analysis of the SER framework also points out some
challenges that must be faced in understanding meta-design
activity. In a closed system, the evolution and reseeding of the
system is not a core activity in the system. Effectively supporting
both of these activities is difficult. If we want to design things,
extending the substrate in order to design what we want is not
likely to be the highest priority for designers. If the extension
process is sufficiently off-task, time-consuming, and difficult,
designers are unlikely to be motivated to make modifications.
Reseeding may prove to be an expensive and time consuming
process in which individuals or groups spend effort in redesigning
or reconceptualizing the system. Again, if this task is sufficiently
time-consuming or off-task, people will be unwilling to
participate, but without their participation a system may reach a
point at which it is no longer sustainable. In Open Source
projects, evolution and reseeding occur naturally because there is
large overlap between the community of developers and users.
Tools change because the members of the community both extend
and use the tools in their daily work. It is harder to see examples
of successful systems where all the users are not developers. In
meta-design, it is valuable for users to engage in design activities,
but not all these activities necessarily require software
development. Supporting meta-design in communities where the
design of software itself is not the core activity is an important
challenge.

3.4 Macros and Embedded Languages
Users are most likely to become designers when they are creating
personally and socially meaningful artifacts. Meta-design activity
that is embedded in the context of creating artifacts has the
potential to capture changes as they are encountered in actual
work. The meta-design capabilities of Microsoft Word provide an
excellent example of this. We have written macros to help fix
common typing errors (such as transposing two characters) and
insert email into documents by erasing the superfluous line breaks
inserted by most email programs. These extensions represent the
nature of incremental modifications that meta-design must
support. Both were motivated by authentic, frequently occurring
problems that Word does not handle well. The extensions
themselves are created partially through direct manipulation
(through Word’s macro recording system) and partially by
learning Visual Basic for Applications, the extension language
embedded in Word.

These examples also point out the challenges that systems
supporting meta-design must face. Our empirical observations and
studies have demonstrated that meta-design requires more than
just technical facilities. Users will not realize a need to extend a
system until an activity in which they engage illustrates a
limitation of the system, and one that the user is sufficiently
motivated to overcome by abandoning the current task to make
the necessary modification. Extending open systems will not take
place within the first few days or weeks of using them, but
requires the long-term use of systems by owners of problems. We
do not expect all users to become end-user programmers or to be
interested in making radical changes to systems. Their
contributions will depend on the perceived benefit of
contributing, which involves the effort needed to make changes
and the utility received for effecting changes. Few users take
advantage of the end-user modifiability components provided by
environments such as Microsoft Word, and even fewer users
engage in exchanging their extensions with others. It is very easy

to make a macro that you cannot share with others because it
(invisibly) depends on some local situation that isn’t true on
others’ systems. Tracking how a modification has changed over
time is extremely challenging. Other communities (such as the
Open Source community [34] and Web-based community of
practice [10]) are better success examples to be analyzed for meta-
design.

3.5 Domain-Oriented Design Environments
The most promising way to provide opportunities for a “designer
mindset” [13] is to allow learners and workers to engage in design
activities by creating environments supporting them in making
external artifacts that they can reflect upon and share with others.
Over the last ten years we have built a large number of different
domain-oriented design environments [11] that support
collaborative activity within a specific domain. DODEs support
mechanisms such as constructing artifacts relevant to a specific
domain, critiquing these constructions, accessing catalogs of
existing designs, linking to contextualized argumentation, and
extending with end-user modifiability capabilities. DODEs can be
used not only to instruct and assist novice designers, but also to
support designers at all levels of expertise.

DODEs support meta-design by allowing users to work on tasks
within a specific domain, rather than working on pre-defined or
fixed tasks. Critics [17] help uncover breakdowns, by activating
relevant information and providing a context for extension. They
also demonstrate challenges that make meta-design (and the SER
model) feasible and workable. DODEs need to be extended by
domain designers (end-users with respect to computational media)
who are neither interested in nor trained in the (low-level) details
of computational environments. Domain designers are more
interested in their design task at hand than in maintaining and
evolving knowledge repositories per se. At the same time,
important knowledge is produced during daily design activities
that should be captured.

Our work on programmable design environments [8, 19] is an
attempt to increase the meta-design components of design
environments. Programmable design environments are based on
the objective to make software more “soft”: that is, they empower
end-users to act as designers by changing and extending the
behavior of a given application without substantial
reprogramming. Rather than just providing illusory and selective
power, they give domain designers the expressive range needed to
augment, personalize, and rethink existing systems.

3.6 Related Work
The necessity to overcome the limitations of closed systems and to
empower users to become designers has been recognized not only
as a desirable goal, but as a necessity in many situations: effective
design involves a co-evolution of artifacts with practice.
Alexander [1] identified two cultures in design: self-conscious
and unself-conscious. In self-conscious design, the construction of
a solution is governed by explicitly represented rules and
principles requiring the anticipation of the solution at design time
(see Figure 2). In unself-conscious culture of design, users will
experience breakdowns by recognizing “bad fit” at use time. The
knowledge leading to these breakdowns is “tacit” [42], and
therefore difficult for users to communicate (at design time) to
those who design the artifact. Meta-design allows users to extend
the results of self-conscious design activities at design time with

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 401

unself-conscious design at use time. These observations drawn
from the domain of architecture have parallels to the design of
interactive systems—because buildings will be modified many
times, they should be designed with unanticipated future changes
in mind [4].

In the design of interactive systems, the Button system [26]
represents an early attempt to create support for meta-design
activities and it started with the same premise as the work
presented here, namely, that “it is impossible to design systems
which are appropriate for all users and all situations.” Another
similarity consisted in emphasizing that to encourage consumers
to become designers needs more than technology: it requires a
culture within which users feel in control and have a designer
mindset.

Nardi [29], in her book “A Small Matter of Programming —
Perspectives on End User Computing,” provides an ethnographic
perspective on social and cognitive dimensions of computer use
(using spreadsheets and CAD systems as examples). Over the
years, we have been especially intrigued by her observation of
collaborative work practices that develop around high-
functionality applications [16], leading to power users and local
developers. These emerging professional roles make meta-design
approaches more feasible because they indicate that design
cultures can develop without requiring every user to become a
sophisticated designer in all domains.

Henderson and Kyng [22] provide a convincing argument that
“design as a process is tightly coupled to use and continues
during the use of the system.” The Problem section above
provides evidence that this is a necessity rather than just a luxury,
and the SER model provides a conceptual framework of how this
might happen, specifically in the context of domain-oriented
design environments. The Open Source movement represents a
success model of design-in-use by computationally sophisticated
communities.

4. THE ENVISIONMENT AND
DISCOVERY COLLABORATORY
The Envisionment and Discovery Collaboratory [2] is a
conceptual framework for supporting collaborative design
activities. The EDC combines physical and computational
representations to support both face-to-face and distributed
collaboration. A primary goal of the EDC is to explore complex
problems by encouraging users to engage in design activities.

At the heart of the EDC are two tightly coupled and highly
interactive components that facilitate group interaction. Based on
the theoretical paradigm of supporting reflection-in-action [40],
these components are called action and reflection space. In the
action space, users manipulate a shared, tangible representation of
a problem being constructed. In the reflection space, information
relevant to the problem is collected, presented, and extended.

Figure 4 gives a few glimpses of the EDC environment by
demonstrating some uses of the environment in the context of
urban transportation planning. The core activity in this specific
EDC application is the design of alternatives to the current mass-
transportation system. Groups of users meet around a horizontal
touch-sensitive interactive surface that serves as the EDC action
space. In the leftmost pane of Figure 4, we can see how activity
takes place around the action space. Users place physical objects
that represent aspects of context being described. In this example,
a user places a red brick (representing a shopping center) on the
board. Other objects include the tree in the upper left
(representing a park) and the yellow square in the lower left
(representing a home). The touch-sensitive computational
whiteboard serves as the interface between physical and
computational representations. As users place objects, the
underlying computational model is simultaneously updated and
projected onto the horizontal surface. This tangible representation
helps users to become designers by simplifying the construction
process. Users can model a neighborhood quickly and easily by
placing appropriate objects on the board. Since the representation
is shared, groups of users can work together face-to-face to
collaboratively model a specific problem of mutual interest.

The second pane shows a more advanced stage in the
construction. Here, a user “draws” a road into the neighborhood.
As the user draws, the computer representation makes dynamic
changes based on what the users do. The road bends when the
user draws a right-angle turn, and the system creates an
intersection when two roads cross. This is a simple example of the
importance of an active computational representation. The
computer model aids design by managing constraints, performing
simulations and calculations, and visualizing the ramifications of
decisions. The computer simulations enhance the design process
by increasing the “talkback” of a model [28], modeling the
situation and trying to highlight salient features in the context of
the current problem.

In the third pane, the map that serves as a backdrop for the model
was retrieved from a database of aerial photographs. Also
retrieved from the database was a computer model of the same
location. When users ask to model a particular location, this
previous computer model and aerial photograph are combined and
presented in the action space. This provides a prime example of
how information relevant to a problem can be activated and
integrated into a situation. Since design problems can potentially
activate a huge amount of information, presenting relevant
information in a contextualized way helps the users solve the
particular design task in question. The tight coupling of the two
spaces—actions in the action space can trigger new information in
the reflection space, information in the reflection space can be
manipulated in the action space— is an important feature.

The interactive experience of the EDC is more than the sum of its
parts, making a static, textual description of the dynamic

Figure 4: The EDC Environment

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 402

environment quite difficult. A more comprehensive demonstration
of the system is available on our Web site [3]. Exploring this
example domain in greater detail helps to explain how the various
pieces fit together. As the stakeholders manipulate the shared
representation, the computational substrate performs various
analyses of the current construction. It can simulate phenomena,
such as buses traveling along their routes and people boarding and
leaving the buses at the bus stops, and visualize this through the
computational display projected onto the action space.
Computational mechanisms can analyze the current construction
and activate information that might be relevant to the current
problem. For example, if people choose to take their cars instead
of waiting for the buses, the system can flag this as an issue that
the participants should address and activate information related to
that problem.

It is instructive to look in detail at some of the features of the
EDC that exemplify meta-design principles.

Conviviality. An important design principle behind EDC
applications is creating situations in which people wish to
participate. We directly support face-to-face collaboration because
the participation of various stakeholders is a critical element in
framing the problem [40]. For example, a neighborhood
transportation issue cannot be adequately discussed without the
input of neighbors. The tangible representation (utilizing the
physical objects) gives a shared space with boundary objects [41]
which are understandable, modifiable and extensible by all
stakeholders. By focusing on problems that are important to a
community, the EDC encourages people to shape the decisions
that affect their daily lives. Through our initial explorations of
some domains, we have observed that supporting authentic
problems is difficult. This is an example of the challenge of
underdesigning the seed for a system. Supporting personally
meaningful activities requires creating an initial model that makes
the realizations of these problems possible. It is not enough to
provide physical objects and simulations that can model a single
problem; the tools must be able to help construct new problems,
requiring adequate domain support. Determining what amount of
support is enough and how the community can help define the
important features are difficult questions.

Domain-orientation. Like any other domain-specific system,
individual EDC applications support discussion around a class of
related problems. The example illustrates the domain of urban
planning and mass transportation, which we have explored in
some depth. Other domains we have explored include flood
mitigation and designing spaces for learning activities (from
rooms to buildings; for details, see [3]).

Domain specificity in the EDC comes in the form of physical
objects, simulations, and supporting information, which are all
designed for the domain in question. In the urban transportation
domain, there are physical objects that represent appropriate
objects such as houses, parks, schools, and shopping centers. The
computational simulations can model phenomena such as bus
routes and traffic flow. Supporting information includes local
newspaper articles, relevant maps, and information about trade-
offs (such as individual car traffic versus public transportation).

By focusing on collaborative representations, the domain-specific
elements take on a different meanings than they might in another
domain-oriented system. The construction is collaborative so
there should be some shared understanding among the people

constructing a problem. Face-to-face interaction is meant to help
make people’s tacit assumptions explicit. The relationship
between personally meaningful and shared domain-specific
representations remains an interesting open issue.

Open systems. To successfully model problems that are
meaningful to individuals and communities, there must be
opportunities for people to express themselves within the system.
The EDC provides different avenues that allow people to
contribute in different ways. Collaborative constructions are made
quickly with the physical objects, supporting rapid creation of
new situations and manipulation of existing ones. Some domain-
specific features (such as surveys) can help specify information
about a problem. In the urban transportation domain, neighbors
can fill out a survey indicating their transportation preferences,
and this information can be used to influence the behavior of the
computational simulation.

The computational substrates themselves are also designed so that
they can be modified when necessary. Our first EDC models have
used the AgentSheets simulation environment [36] because of its
extension capabilities. Users can add new objects to a simulation.
The Visual AgenTalk programming language provides a
interactive graphical means to change the behavior and interaction
between objects. For example, Visual AgenTalk can help specify
if two objects are too close together, and flag a problem if this is
true. Information about a problem can be captured and extended
by means of dynamic information spaces. For example, DynaSites
[31] is a system for building dynamic Web sites, including
features such as threaded discussions and extensible glossaries. In
one EDC application, issues raised in the computer simulation
were linked to threaded discussions in DynaSites. This created a
link between face-to-face discussions and the persistent
discussions that can be captured in an information space.

Adequate technical infrastructure that makes change possible is
important but only part of what is necessary. Although changing
many different aspects of the system is possible, not all changes
are equally easy. Users can quickly create new situations with
physical languages, but changing the mechanics of the simulation
by programming in Visual AgenTalk requires much more time
and understanding of the system. Although such programming is
likely easier than re-programming a model in Lisp or Smalltalk, it
still requires a knowledge of the system that a user may not have
(or wish to acquire.) Like many systems [26], the EDC aims to
provide a gradual transition between different kinds of changes,
and provide new opportunities for extension when the need arises.
Supporting these changes in the context of EDC activity is
challenging. It is unlikely that all changes will be equally easy (or
time-consuming), so the process of dealing with changes must be
built in to the whole problem-solving process. Creating this
culture where changes are a part of the process is a worthwhile
goal.

5. ASSESSMENT
An important technical challenge for meta-design environments is
to capture the informal, situated problem-solving episodes that
real people generate in solving real problems. Formal processes
have difficulties anticipating or capturing such episodes.
Following, we will briefly articulate some of our experiences
attempting to support meta-design.

Dale Evernden
Highlight

Dale Evernden
Highlight

 403

Meta-Design is Hard. Unfortunately, the potential for
conviviality exists in many current computer systems only in
principle. Many users perceive computer systems as unfriendly
and uncooperative, and they view their use as too time
consuming; they spend more time fighting the computer than
solving their problems. Many users depend on specialists (“high-
tech scribes”) for help, and despite the fact that they deal with
“soft”ware, they do not experience software as “soft” (i.e., the
behavior of a system cannot be changed without reprogramming it
substantially). The world of computing is separated into a
population of elite scribes who can act as designers and a much
larger population of intellectually disenfranchised
computerphobes who are forced into a consumer role.

Beyond Binary Choices. In spite of our arguing for the
desirability for humans to be designers [13], it should be stated
explicitly that there is nothing wrong with being a consumer. We
can learn and enjoy many things in a consumer role (e.g., listening
to a lecture, watching a tennis match, or attending a concert). It is
a mistake to assume that being a consumer or being a designer has
to be a binary choice. It is rather a continuum, ranging from
passive consumer, to active consumer, to end-user, to user, to
power-user [29], to domain designer, to system designer, all the
way to meta-designer (see Figure 5, illustrating this fine-grain
division of labor among software users). Problems occur when
someone wants to be a designer but is forced to be a consumer, or
when being a consumer becomes a universal habit and mindset
that dominates a human life completely.

Consumer <--> Designer

passive consumer

 active consumer

 end-user

 user

 power-user

 domain designer

 system designer

 meta-
designer

Figure 5: Multiple Roles in the Consumer/Designer Spectrum

Extending Meta-Design to Design for Design Communities.
Design (as exemplified by the EDC) is a domain requiring people
to think, work, and learn in conjunction or partnership with others
and with the help of culturally provided tools and artifacts. A
fundamental future challenge for meta-design is to create
environments that not only support individual users as designers,
but support design communities. Although creative designers are
often thought of as working in isolation, the role of interaction
and collaboration with other individuals is critical [9]. The
predominant activity in designing complex systems is that
participants teach and instruct each other [20]. Because complex
problems require more knowledge than any single person
possesses, it is necessary that all involved stakeholders participate,
communicate, and collaborate with each other. Project complexity
forces large and heterogeneous groups to work together on
projects over long periods of time. Designers generally have a
limited awareness and understanding of how the work of other
designers within the project—or in similar projects—is relevant to
their own part of the design task. The large and growing
discrepancy between the amount of such relevant knowledge and

the amount any one designer can possibly remember imposes a
limit on progress in design. Overcoming this limit is a central
challenge for developers of systems that support collaborative
design. An specific objective in our current work on meta-design
is to enrich our environments by putting more knowledge into the
world in the form of externalizations, oeuvres, and sharable
artifacts [6].

Motivation and Rewards. An important nontechnical challenge
for meta-design is to take motivation seriously. There must be an
incentive to create social capital [35] by rewarding stakeholders
for being good citizens by contributing and receiving knowledge
as a member of a community. Computational support mechanisms
are necessary prerequisites, but not sufficient conditions to
motivate people to become part of a “design culture.” People must
be motivated and rewarded for investing time and effort to
become knowledgeable enough to act as designers [21]. These
rewards may include (1) feeling in control (i.e., independent from
“high-tech scribes”), (2) being able to solve or contribute to the
solution of a problem, (3) mastering a tool in greater depth, (4)
making an ego-satisfying contribution to a group, (5) and
enjoying the feeling of good citizenship to a community [35].

6. CONCLUSIONS
The true contribution of computational media might be to allow
all of us to take on or incrementally grow into a designer role in
areas that we consider personally meaningful and important.

Meta-design is impossible in communities in which most
members regard themselves as consumers. Consumers must
evolve into power-users [29] and co-developers [22] who use
artifacts and at the same time modify and extend them. A strict
separation between these two groups is undesirable and
unproductive. One of the major potentials of information
technology is giving people the option to become designers by
changing and enhancing a software system. One of the major
contributions that information technology can lend to the world is
to deeply understand and exploit the potential of the malleable
nature of software.

Individuals acting as designers must acquire a new mindset—they
are no longer passive receivers of knowledge, but instead are
active researchers, constructors, and communicators of
knowledge. Knowledge is no longer handed down from above,
but instead is constructed collaboratively in the contexts of work.
The foremost objective of meta-design is empowering humans
(albeit not all of them, not at all times, not in all contexts) to be
and act as designers.

7. ACKNOWLEDGMENTS
The authors would like to thank the members of the Center for
LifeLong Learning & Design at the University of Colorado, who
have made major contributions to the conceptual framework and
systems described in this paper. We are especially grateful to
Ernesto Arias, Hal Eden and Andrew Gorman, our co-developers
of the EDC over the last five years. The research was supported
by (1) the National Science Foundation, Grants REC-9631396
and IRI-9711951; (2) Software Research Associates, Tokyo,
Japan; (3) PFU, Tokyo, Japan; and (4) the Coleman Foundation,
San Jose, CA.

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

Dale Evernden
Highlight

 404

8. REFERENCES
1. Alexander, C. The Synthesis of Form. Cambridge, MA:
Harvard University Press (1964).

2. Arias, E.G., H. Eden, G. Fischer, A. Gorman, and E.
Scharff. Beyond Access: Informed Participation and
Empowerment. In Proceedings of the Computer Supported
Collaborative Learning (CSCL '99) Conference, Stanford: pp. 20-
32 (1999).

3. Arias, E.G., H. Eden, G. Fischer, A. Gorman, and E.
Scharff. Envisionment and Discovery Collaboratory (EDC)
Website at http://www.cs.colorado.edu/~l3d/systems/EDC/

4. Brand, S. How Buildings Learn: What Happens After
They're Built. New York: Penguin Books (1995).

5. Brown, J.S., P. Duguid, and S. Haviland. Toward
Informed Participation: Six Scenarios in Search of Democracy in
the Information Age. The Aspen Institute Quarterly. 6(4): pp. 49-
73 (1994).

6. Bruner, J. The Culture of Education. Cambridge, MA:
Harvard University Press (1996).

7. Computer Science Technology Board. Scaling Up: A
Research Agenda for Software Engineering. Communications of
the ACM. 33(3): pp. 281-293 (1990).

8. Eisenberg, M. and G. Fischer. Programmable Design
Environments: Integrating End-User Programming with Domain-
Oriented Assistance. In Human Factors in Computing Systems,
CHI'94 (Boston, MA). New York: ACM, pp. 431-437 (1994).

9. Engelbart, D.C. Toward Augmenting the Human
Intellect and Boosting our Collective IQ. Communications of the
ACM. 38(8): pp. 30-33 (1995).

10. Experts-Exchange. Experts-Exchange Web Site at
http://www.experts-exchange.com

11. Fischer, G. Domain-Oriented Design Environments.
Automated Software Engineering. 1(2): pp. 177-203 (1994).

12. Fischer, G. Putting the Owners of Problems in Charge
with Domain-Oriented Design Environments. In User-Centered
Requirements for Software Engineering Environments, D.
Gilmore, R. Winder, and F. Detienne (Eds.). Heidelberg: Springer
Verlag, pp. 297-306 (1994).

13. Fischer, G. Beyond 'Couch Potatoes': From Consumers
to Designers. In 1998 Asia-Pacific Computer and Human
Interaction, APCHI'98, IEEE (Ed.). IEEE Computer Society, pp.
2-9 (1998).

14. Fischer, G. Seeding, Evolutionary Growth and
Reseeding: Constructing, Capturing and Evolving Knowledge in
Domain-Oriented Design Environments. Automated Software
Engineering. 5(4): pp. 447-464 (1998).

15. Fischer, G. Lifelong Learning: Changing Mindsets. In
7th International Conference on Computers in Education on
"New Human Abilities for the Networked Society" (ICCE'99,
Chiba, Japan), G. Cumming, T. Okamoto, and L. Gomez (Eds.).
Omaha: IOS Press, pp. 21-30 (1999).

16. Fischer, G. User Modeling in Human-Computer
Interaction. User Modeling and User-Adapted Interaction,
Dordrecht, The Netherlands: Kluwer Academic Publishers. (to
appear)(2000).

17. Fischer, G., K. Nakakoji, J. Ostwald, G. Stahl, and T.
Sumner. Embedding Critics in Design Environments. In Readings
in Intelligent User Interfaces, M.T. Maybury and W. Wahlster
(Eds.). San Francisco: Morgan Kaufmann, pp. 537-561 (1998).

18. Fischer, G. and E. Scharff. Learning Technologies in
Support of Self-Directed Learning. Journal of Interactive Media
in Education. 1998(4)(1998).

19. Girgensohn, A., End-User Modifiability in Knowledge-
Based Design Environments, in Department of Computer Science,
Boulder, CO: University of Colorado at Boulder, pp. 190 (1992).

20. Greenbaum, J. and M. Kyng, ed. Design at Work:
Cooperative Design of Computer Systems. Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc. (1991).

21. Grudin, J. Groupware and Social Dynamics: Eight
Challenges for Developers. Communications of the ACM. 37(1):
pp. 92-105 (1994).

22. Henderson, A. and M. Kyng. There's No Place Like
Home: Continuing Design in Use. In Design at Work:
Cooperative Design of Computer Systems, J. Greenbaum and M.
Kyng (Eds.). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.,
pp. 219-240 (1991).

23. Illich, I. Deschooling Society. New York: Harper and
Row (1971).

24. Illich, I. Tools for Conviviality. New York: Harper and
Row (1973).

25. Ingalls, D., T. Kaehler, J. Maloney, S. Wallace, and A.
Kay. Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself. In Conference on Object Oriented
Programming Systems, Languages, and Applications (OOPSLA),
Atlanta, GA: ACM, pp. 318-326 (1997).

26. MacLean, A., K. Carter, L. Lovstrand, and T. Moran.
User-Tailorable Systems: Pressing the Issues with Buttons. In
Proceedings of CHI'90 Conference on Human Factors in
Computing Systems, J. Carrasco and J. Whiteside (Eds.). New
York: ACM, pp. 175-182 (1990).

27. Maxis. SimCity 3000 at http://www.simcity.com

28. Nakakoji, K., Y. Yamamoto, T. Suzuki, S. Takada, and
M. Gross. From Critiquing to Representational Talkback:
Computer Support for Revealing Features in Design. Knowledge-
Based Systems Journal. 11(7-8): pp. 457-468 (1998).

29. Nardi, B.A. A Small Matter of Programming.
Cambridge, MA: The MIT Press (1993).

30. O’Reilly, T. Lessons from Open Source Software
Development. Communications of the ACM. 42(4): pp. 33-37
(1999).

31. Ostwald, J. DynaSites at http://www.cs.colorado.edu/
~ostwald/dynasites.html

32. PCAST. Report to the President on the Use of
Technology to Strengthen K-12 Education in the United States at
http://www.whitehouse.gov/WH/EOP/OSTP/NSTC/ PCAST/k-
12ed.html.

33. Postman, N. Amusing Ourselves to Death—Public
Discourse in the Age of Show Business. New York: Penguin
Books (1985).

 405

34. Raymond, E.S. The Cathedral and the Bazaar at
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

35. Raymond, E.S. Homesteading the Noosphere at
http://www.tuxedo.org/~esr/writings/homesteading/

36. Repenning, A. AgentSheets Web Site at
http://www.agentsheets.com/

37. Repenning, A., A. Ioannidou, and J. Phillips.
Collaborative Use & Design of Interactive Systems. In
Proceedings of the Computer Supported Collaborative Learning
(CSCL '99) Conference, Stanford: pp. 475-487 (1999).

38. Resnick, M., Beyond the Centralized Mindset:
Explorations in Massively-Parallel Microworld, in Department of
Computer Science, Cambridge, MA: Massachusetts Institute of
Technology, pp. 176 (1992).

39. Rittel, H. Second-Generation Design Methods. In
Developments in Design Methodology, N. Cross (Ed.). New York:
John Wiley & Sons, pp. 317-327 (1984).

40. Schön, D.A. The Reflective Practitioner: How
Professionals Think in Action. New York: Basic Books (1983).

41. Wenger, E. Communities of Practice — Learning,
Meaning, and Identity. Cambridge, England: Cambridge
University Press (1998).

42. Winograd, T. and F. Flores. Understanding Computers
and Cognition: A New Foundation for Design. Norwood, NJ:
Ablex Publishing Corporation (1986).

