
Patterns—Common Elements and Forms
A pattern is a literary form. Several forms have emerged and evolved over the years. This
document summarizes the most popular pattern forms, drawing directly on their
originators insights.

Common Elements: an explanation of the most common structural
elements found in patterns.

Intent/ Question: The intent is a phrase or sentence that summarizes what the
pattern does, describing the design issue or problem it addresses.  As a designer
scans patterns for solutions to a specific problem, the intents provide a road map
into promising patterns and around irrelevant ones.

Problem:  the problem section describes the problem to be solved.  A concise
problem statement helps the problem solver decide whether to read further, and it
often serves as the primary index for pattern selection.

Context:  Context includes a history of patterns that have been applied before the
current pattern was considered,  It also specifies size, scope, market,
programming language, or anything else that, if changed, would invalidate the
pattern.  Pattern context is particularly crucial to the success of a pattern language,
a collection of patterns that work together to solve system-level problems.
Contexts weave patterns together into a pattern language.  Context sections
mature with experience: as designers find special situations that invalidate the
pattern, the context grows to become more restrictive.

Forces: The forces should amplify and illustrate the problem statement because it
is through the forces that one fully appreciates the problem. If we understand the
forces in a pattern, then we understand the problem (because we understand the
trade-offs) and the solution (because we know how it balances the forces). As
patterns mature they move past purely technical and mechanical forces and take
human forces into account.

Solution:  A good solution has enough detail so the designer knows what to do,
but it is general enough to address a broad context.  Some patterns provide only
partial solutions but open a path to other patterns that balance unresolved forces.

Sketch—(the purpose of the sketch is to indicate structure and indicate the
relationship between parts) the meaning behind the word sketch is important here.
The sketch associated with a pattern should not be taken as a graphical
specification.  Many readers will interpret a finely refined diagram to literally.
Rough sketches are valuable because they refocus the solution back on to the
context.  Beautiful drawings can become ends in themselves.



Resulting Context—Each pattern is designed to transform a system in one
context to a new context. The “resulting context” of one pattern is input to the
patterns that follow.  Context ties related patterns together into a pattern language.
Simply put, the resulting context is the wrap up of the pattern.
It tells us:

• Which forces were resolved
• Which new problems may arise because of this pattern
• What related patterns may come next?

Five Forms: A discussion of the most common forms found across the pattern
language community:

The five forms that are discussed below are as follows:

1. Alexanderian form
2. GOF form
3. Coplien Form
4. Portland Form
5. Canonical Form

Alexanderian Form:

The Alexanderian form, from Christopher Alexander’s work, is the original
pattern form. The sections of an Alexanderian pattern are not strongly delimited. The
major syntactic structure is a Therefore immediately preceding the solution. Other
elements of the form are usually present: a clear statement of the problem, a
discussion of forces, the solution, and a rationale. Each Alexanderian pattern usually
follows an introductory paragraph that enumerates the patterns that must already have
been applied to make the ensuing pattern meaningful. The pattern itself starts with a
name and a confidence designation of zero, one, or two stars. Patterns with two stars
are the ones in which the authors have the most confidence because they have
empirical foundations. Patterns with fewer stars may have strong social significance
but are more speculative.

Alexander Patterns have five parts:
Name.
A short familiar, descriptive name or phrase, usually more indicative of the solution
than of the problem or context. Examples include Alcoves, Main entrance, Public
outdoor room, Parallel roads, Density rings, Office connections, Sequence of sitting
spaces, and Interior windows.
Example.
One or more pictures, diagrams, and/or descriptions that illustrate prototypical
application.
Context.



Delineation of situations under which the pattern applies. Often includes background,
discussions of why this pattern exists, and evidence for generality.
Problem.
A description of the relevant forces and constraints, and how they interact. In many
cases, entries focus almost entirely on problem constraints that a reader has probably
never thought about. Design and construction issues sometimes themselves form parts
of the constraints.
Solution.
Static relationships and dynamic rules (microprocess) describing how to construct
artifacts in accord with the pattern, often listing several variants and/or ways to adjust
to circumstances. Solutions reference and relate other higher- and lower-level
patterns.

Here is Alexander s own description of his form:
“For convenience and clarity, each pattern has the same format. First, there is

a picture, which shows an archetypal example of that pattern. Second, after the
picture, each pattern has an introductory paragraph,which sets the context for the
pattern, by explaining how it helps to complete certain larger patterns. Then there are
three diamonds to mark the beginning of the problem. After the diamonds there is a
headline, in bold type. This headline gives the essence of the problem in one or two
sentences. After the headline comes the body of the problem. This is the longest
section. In describes the empirical background of the pattern, the evidence for its
validity, the range of different ways the pattern can be manifested in a building, and
so on. Then, again in bold type, like the headline, is the solution the heart of the
pattern which describes the field of physical and social  relationships which are
required to solve the stated problem, in the stated context. This solution is always
stated in the form of an instruction so that you know exactly what you need to do, to
build the pattern. Then, after the solution, there is a diagram, which shows the
solution in the form of a diagram, with labels to indicate its main components. After
the diagram, another three diamonds, to show that the main body of the pattern is
finished. And finally, after the diamonds there is a paragraph which ties the pattern to
all those smaller patterns in the language, which are needed to complete this pattern,
to embellish it, to fill it out.” (Alexander et al., 1977: pp.x xi)

Example:

Simply Understood Code:

At the lowest levels of a program are chunks of code. These are the places that need
to be understood to confidently make changes to a program, and ultimately
understanding a program thoroughly requires understanding these chunks. In many
pieces of code the problem of disorientation is acute. People have no idea what each
component of the code is for and they experience considerable mental stress as a
result. Suppose you are writing a chunk of code that is not so complex that it requires



extensive documentation or else it is not central enough that the bother of writing
such documentation is worth the effort, especially if the code is clear enough on its
own. How should you approach writing this code?

People need to stare at code in order to understand it well enough to feel secure
making changes to it. Spending time switching from window to window or scrolling
up and down to see all the relevant portions of a code fragment takes attention away
from understanding the code and gaining confidence to modify it. People can more
readily understand things that they can read it their natural text reading order; for
Western culture this is generally left to right, top to bottom.

If code cannot be confidently understood, it will be accidentally broken.

Therefore,
Arrange the important parts of the code so it fits on one page. Make that code
understandable to a person reading it from top to bottom. Do not require the code to
be repeatedly scanned in order to understand how data is used and how control
moves about.

This pattern can be achieved by using the following patterns:
• Local Variables Defined and Used on One Page, which tries to keep local

variables on
• one page;
• Assign Variables Once, which tries to minimize code scanning by having

variables
• changed just once;
• Local Variables Reassigned Above their Uses, which tries to make a

variable s
• value apparent before its value is used while scanning from top to bottom;
• Make Loops Apparent, which helps people understand parts of a program

that are non-linear while retaining the ability to scan them linearly;
• Use Functions for Loops, which packages complex loop structure involving

several state variables into chunks, each of which can be easily understood.
(Gabriel, 1995)

The GOF Form:

The GOF ( Gang of Four ) Form was established in Design Patterns (Gamma et al.,
1995). It has the following sections:

• Pattern Name and Classification: The pattern s name conveys the essence of
the pattern succinctly. A good name is vital, because it will become part of
your design vocabulary...

• Intent: A shorn statement that answers the following questions: What does
the design pattern do? What is its rationale and intent? What particular design
issue or problem does it address?

• Also Known As: Other well-known names for the pattern, if any.
• Motivation: A scenario that illustrates a design problem and how the class



and object structures in the pattern solve the problem. The scenario will help
you understand the more abstract description of the pattern that follows.

• Applicability: What are the situations in which the design pattern can be
applied? What are examples of poor designs that the pattern can address? How
can you recognize these situations?

• Structure: A graphical representation of the classes in the pattern using a
notation based on the Object Modeling Technique (OMT) [Rumbaugh et al.,
19911. We also use interaction diagrams (Jacobson et al., 1992; Booch, 1994)
to illustrate sequences of requests and collaborations between objects...

• Participants: The classes and /or objects participating in the design pattern
and their responsibilities.

• Collaborations: How the participants collaborate to carry out their
responsibilities.

• Consequences: How does the pattern support its objectives?What are the
trade-offs and results of using the pattern? What aspect of system structure
does it let you vary ndependently?

• Implementation: What pitfalls, hints, or techniques should you be aware of
when implementing the pattern? Are there language-specific issues? Sample
Code: Code fragments that illustrate how you might implement the pattern in
C++ or Smalltalk.

• Known Uses: Examples of the pattern found in real systems. We include at
least two examples from different domains.

• Related Patterns: What design patterns are closely related to this one? What
are the important differences? With which other patterns should this one be
used?

• (Gamma et al., 1995: pp. 6 7)

Example :
Name--The Bridge Pattern
Intent
Decouple an abstraction from its implementation so that the two can vary
independently.
Also Known As
Handle/Body
Motivation
When an abstraction can have one of several possible implementations, the usual way
to accommodate them is to use inheritance. An abstract class defines the interface
to the abstraction, and concrete subclasses implement it in different ways. But this
approach isn’t always flexible enough. Inheritance binds an implementation to the
abstraction permanently, which makes it difficult to modify, extend, and reuse
abstractions and implementations independently. The Bridge pattern addresses these



problems by punning the ... abstraction and its implementation in separate class
hierarchies.
Applicability

• Use the Bridge pattern when
• You want to avoid a permanent binding between an abstraction and its

implementation...
• Both the abstractions and their implementations should be extensible by

subclassing...
• Changes in the implementation of an abstraction should have no impact on

clients; that is, their code should not have to be recompiled.
• (C++) you want to hide the implementation of an abstraction completely from

clients...
• You have a proliferation of classes... Such a class hierarchy indicates the need

for splitting an object into two parts...
• You want to share an implementation among multiple objects (perhaps using

reference counting), and this fact should be hidden from the client.

• A simple example is Coplien’s String class [Coplien, 1992], in which multiple
objects can share the same string representation (StringRep). (Gamma et al.,
1995: pp. 151—153)

Name
Mediator
Intent
Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it lets
you vary their interaction independently.
Motivation
Object-oriented design encourages the distribution of behavior among objects. Such
distribution can result in an object structure with many connections between objects;
in the worst case, every object ends up knowing about every other. Though
partitioning a system into many objects generally enhances reusability, proliferating
interconnections
Interconnections tend to reduce it again. Lots of interconnections make it less likely
that an object can work without the support of others the system acts as though it
were
monolithic. Moreover, it can be difficult to change the system s behavior in any
significant way, since behavior is distributed among many objects. As a result, you
may be forced to define subclasses to customize the system s behavior. You can avoid
these problems by encapsulating collective behavior in a separate mediator object. A
mediator
is responsible for controlling and coordinating the interactions of a group of objects.
The mediator serves as an intermediary that keeps objects in the group from referring
to each other explicitly. The objects only know the mediator, thereby reducing the
number of interconnections.
Consequences
1. It limits subclassing...
2. It decouples colleagues...
3. It simplifies object protocols...
4. It abstracts how objects cooperate...
5. It centralizes control



The Portland Form:

Ward Cunningham maintains an on-line repository of patterns called the
Portland Pattern Repository. Many of the patterns found in that forum follow the
Portland Form, of which Cunningham writes: The repository prefers patterns written
in the Portland Form, a form first adopted by three authors submitting papers to the
Pattern Languages of Programs conference, PLoP 94. (All three were from Portland,
Oregon, hence the name.) The form has been described as narrative, as opposed to the
more outline like form of keyword templates first used by Peter Coad and made
popular by Erich Gamma et al. The form is actually a fairly direct emulation of
Alexander s form with some simplification in typesetting. We hope that the hypertext
aspects of the repository will more than make up
for the omissions and simplifications of the Portland Form.

Language Document
Each document in the Portland Form contains a system of patterns that work together.
Alexander calls such systems languages since he believes the human mind assembles
the words of a natural language, namely, without much conscious thought. The
Portland Form collects and connects patterns so that they will be studied and
understood as a whole. Although we believe all patterns will be ultimately linked, we
currently give authors the responsibility of defining a suitable whole consistent with
their own  Knowledge and their readers ability to absorb. This unit we call both a
language and a document...
Pattern Paragraphs
Each pattern in the Portland Form makes a statement that goes something like: such
and so forces create this or that problem, therefore, build a thing-a-ma-jig to deal with
them. The pattern takes its name from the thing-a-ma-jig, the solution. Each pattern in
the Portland Form also places itself and the forces that create it within the context of
other forces, both stronger and weaker, and the solutions they require. A wise
designer
resolves the stronger forces first, then goes on to address weaker ones. Patterns
capture this ordering by citing stronger and weaker patterns in opening and closing
paragraphs. The total paragraph structure ends up looking like:

• Having done so and so you now face this problem...
• Here is why the problem exists and what forces must be resolved...

Therefore:
• E Make something along the following lines. I’ll give you the help I can...
• E Now you are ready to move on to one of the following problems...

Summary Screen
Long pattern languages find groups of patterns working around similar ideas.
Portland Form introduces such groups with a summary section. This section explains
the general problem under consideration and names the patterns that address it.



(Source: The Portland Pattern Repository, http:// c2.com/ppr/)

Example:

Early Development
These patterns talk about how you begin developing a system. How do you learn
what you need to from the client without alienating them? How do you make sure
your understanding is consistent with the needs of the program? How do you accept
and take advantage of the inevitable changes in your client's thinking? The patterns
are:

1. Story
2. Early Program
3. Architecture Prototype
4. Interface Prototype

1. Story

<What patterns are upstream of Story? Must be something about deciding to
computerize something.>

How do you start development?

Unless you are already an expert in the field, as a software engineer you need to begin
to understand your client's area of expertise before you can begin making decisions.
Somehow, you need to learn enough to get going.

Some engineers begin development with a software mind-set. They begin
diagramming or even programming as soon as the client begins talking. As you will
see in Early Program (2), I believe in beginning to program early in the process, but
the client has to drive the process at first. If you begin with the mapping of desires to
possibilities too soon, you risk missing the real point of the desires. Often, your client
will say subtle things in the first few minutes that can have enormous impact on the
development. If you are too busy figuring out whether you have a 1-to-1 or 1-to-n
relationship, you will overlook these nuggets.

Other engineers take the opposite tack. They want to gather all the requirements
before development begins. I call this "use case paralysis". The notion that there are
"requirements" that can be "gathered" has killed more software projects than any
other. It's like trying to bake a cake before you've mixed the ingredients. The presence
of the system, even the presence of the process of building the system, changes the
client's perception of their world. Better to recognize the way the world works, and
adapt to it, than to continue wasting time, money, and energy chasing a will-o-the-
wisp.



Another factor that enters into the decision of how to get informed about the client's
expertise is the natural human need to feel heard. Software development is often
disenfranchises the client. Whatever they were doing before is about to change
forever. But without the willing participation of your client, you can never be
successful. How can you get someone who is about to be screwed to help you with
enthusiasm?

Finally, recognize that you will never truly become an expert in your client's field,
unless you stop looking at it through the eyes of a software engineer. No matter how
well you learn to talk the talk, you still won't walk the walk. Fortunately, it is not
important to be an expert to write effective software (already it is probably necessary
to be an expert to write great software). You only need to know enough to map your
client's desires to the capabilities of current computers. In the beginning, you only
need to understand enough to get the evolution of the system rolling.

Therefore, ask your client to tell you a half a dozen stories about how the system will
be used. Ask them to think about the moral or point of each story before they begin
telling it. Record the stories for later transcription. Don't ask too many questions
while you are listening, unless you are hopelessly lost.

You need Early Program (2) to test your understanding and begin the process of
evolution.

------------------------------------------------------------------------

2. Early Program

You have a handful of Stories (1) that describe how the system should feel.

What do you do to begin mapping what the client wants into software?

Some developers begin casting their client's desires as software in the abstract. They
use a CASE tool to draw diagrams that represent the client's domain. Then they use a
CASE tool to draw diagrams that represent the software. Finally, they allow the
program to be cast in executable form.

I think that this abhorrence of running software comes from the early days of large
scale software development. It wasn't far into the history of programming that it was
obvious that just sitting down and programming wasn't enough. Programmers without
the discipline to take a more structured approach were looked down on. "Oh, he's just
a hacker."

What is the problem with early code? In the early days of programming styles,
languages and environments, it was common for assumptions to permeate the entire



program. These assumptions formed enormous inertia against change. Thus, decisions
made early in ignorance were extremely costly if they turned out to be wrong.

What is the problem with abstract representations of the client's desires and the
software which realizes them? Simply, it is far too easy to bullshit about the quality of
the software, the degree to which it pleases the client, and how far along it is.
Thousands of pages of analysis and design diagrams can easily mask the fact that no
one know how, or even if, the whole system works.

System development needs some objective measure of the progress. Diagrams have a
strong role to play in communicating the structure and intent of the system at all
phases. Relying solely on diagrams is begging for trouble.

But what about the problems with early programs? Aren't they written in ignorance of
the eventual needs of the system, invoking the inordinate costs pointed about above?
Many things have changed since the days when a program was a monolith to be
altered only at the sacrifice of all you held dear. Programming languages have
developed abstractions like polymorphism and garbage collection which effectively
insulate parts of the program from changes in other parts. Programming environments
with support for large system development ease the mechanics of making and
verifying changes. The final piece of the puzzle of reducing the cost of code changes,
the factor which makes early code more than worthwhile, in fact makes it essential, is
pattern guided development. Programming style based on patterns ensures that all
parts of the program keep an appropriate eye on future evolution, and the nothing will
be done to gratuitously hinder changing the code.

The combination of these factors- language, environment, and patterns- creates code
which is not expensive to change, even radically. Thus, as new insights come to light,
they can be incorporated into the running system quickly and at minimal cost. The
advantages of concrete, running software are overwhelming if there is no great price
to pay.

Therefore, build concrete software that shows how the system executes the Stories.

If you are working in a group, you may want to build simulated software first with
CRC (?). A technically literate client can understand an Architecture Prototype (3). A
client who is more visually oriented might profit from an Interface Prototype (4).

------------------------------------------------------------------------

3. Architecture Prototype

You need to write an Early Program (2).

What kind of program should you write early in development?



Early in a project the client and the developers are both looking at a distant object
through fuzzy telescopes. The real question is, which telescope do you focus first?

There's lots to recommend prototyping the client's view of the system, the user
interface. It is the one point in the system where the client and the developer are
looking at the same thing. For clients and developers who aren't communicating well,
prototyping the user interface can give them enough common ground to stand them
through the rest of the project.

The major argument against user interface prototyping is that it prematurely raises the
client's expecation of what is possible. As soon as they see something that looks like
the system, they will assume the rest is done. Clients who aren't familiar with
software development can get quite belligerent when told that even though the
pictures look finished, the software is only 5% done.

The other important aspect of the system to decide on early is the architecture- the
major components, their distribution of responsibility and flows of control. The
architecture is the common ground for the whole development staff. Until the team
shares a vision of the architecture, little real progress is made. Actually, code that is
written in the absence of an architecture may slow further development.

Therefore, write a tiny system which communicates the important shared
responsibilities to developers. Give each object no more than a handful of methods.
Optimize readability over flexibility.

Begin the system with a User's Object (?). Document the prototype with a Literate
Program (?).

------------------------------------------------------------------------

4. Interface Prototype

You need to write an Early Program (2).

What code do you write early in development?

Some developers are so focused on how they are going to make the system work that
they are unable to take a step back and understand the system from the client's point
of view. They tuck what little understanding they have of the client's domain under
their arm and run with it. Systems developed in this environment are often technically
beautiful but useless, providing no payback for the development investment. The
developers need to "walk a mile in the client's shoes".



Clients often have the opposite problem- they are so focused on the grand and
glorious future that they are unable to focus on what to do first. Symptoms of this
disease are system concepts that never get more specific than a handful of bullet items
or architecture diagrams drawn by non-technical clients. Systems with unfocused
clients go through wild thrashing early in their lives. The client needs to set priorities.

Therefore, write the user visible portion of the system required to support the most
important Story (1).

You will need to build a User Interface (?).

The Coplien Form
The Coplien form also reflects the basic elements found in the Alexanderian form. It

delineates pattern sections with section headings and includes:

• The pattern name: The Coplien form commonly uses nouns for pattern names,
but short verb phrases can also be used. This follows from the Alexanderian form.

• The problem: The problem is often stated as a question or design challenge. This
is analogous to the Alexanderian section that follows the first three diamonds.

• The context: A description of the context in which the problem might arise, and
to which the solution applies. This is like Alexander’s introductory paragraph that
sets context.

• The forces: The forces describe pattern design trade-offs; what pulls the problem
in different directions, toward different solutions? This is like Alexander’s in-
depth description of the problem, the longest part of the pattern.

• The solution: The solution explains how to solve the problem, just as in the
emboldened section of an Alexanderian pattern. A sketch may accompany the
solution—analogous to the second sketch of Alexander’s patterns.

• A rationale: Why does this pattern work? What is the history behind the pattern?
We extract this so it doesn’t “clutter” the solution. As a section, it draws attention
to the importance of principles behind a pattern; it is a source of learning, rather
than action.

• Resulting context: This tells which forces the pattern resolves and which forces
remain unresolved by the pattern, and it points to more patterns that might be the
next ones to consider. This is like the Alexanderian section following the second
set of three diamonds.



Example:
“the Log book”
URL: http://c2.com/cgi/wiki?LogBook

Type: SelfImprovementPatterns
Definition: A notebook (NonVirtualHardCopy?) where you log and probably describe
and explain your activities while performing it. Not an agenda.
Problem:

• You want to stop forgetting about how you did things in the past, or what you
were thinking at a certain moment.

• You want to organize your thinking while working.
• You want to keep legal records of your actions.
• You want to record your activities.

Context: A log book keeps track of knowledge acquired over time. It can be a record of
data, thoughts, or activities. It answers the question "What did you know and when did
you know it?" It documents the rationale for the actions you take.
Forces:

• Human LongTermMemory is unreliable.
• SecondaryStorage? is subject to crashes and malfunction.
• You can not be sure that you will be able to read disks and tapes after 10 years,

for technological changes, and 6 months, due to media problems.
• Paper is the media with longer duration.
• Writing enforces LongTermMemory.
• You may be legally bound to keep a log.
• Writing helps thinking.

Solution: Keep a notebook besides you. Log everything you do, including the rationale
you followed. This is called a LogBook and is current practice in many activities, like
ExperimentalPhysics?.
Observation And required in many others (e.g. my better half - a biotechnology research
scientist - is required to keep them). When they're full, they get stored in a controlled
atmosphere and environment in a cave somewhere in southern England. Log books might
provide evidence for later patent cases. So, she should keep two, a second one for her.
Resulting Context:
Through your work life you will have the LogBook, actually many LogBooks?, to access.
The act of writing itself enforces LongTermMemory.
The words you write may someday be read back to you in Court.
Design Rationale: Some thoughts:

• Start slowly. Any log is better that no log.
• Keep it where you can see.
• Keep it open.
• Keep it where you can use it.
• Must be easy to use.
• Must be easy to carry with you.



• Must be personal.
• Must be safe from crashes.
• Date pages.
• Number pages.
• Cross reference when you have the option.
• Use a consistent format, if you manage.
• Keep it readable.
• Leave spaces after entries, if you are not using it for legalpurposes.
• Use icons, drawings, colors.
• Don't spend time being beautiful, spend time being informative.
• It's more important to keep the log than to follow all of these practices.

Related Patterns:
ProgrammersNotebook
PhoneLog?
LaboratoryNotebook?
ProjectLogBook?
PersonalLogBook?
FieldNotebook?

Canonical Form
“The section headings of the paragraphs which immediately follow, make up what
is called "canonical form" (sometimes this too is called "Alexandrian form") and
is the format used by [POSA], AGCS, and many others (often with slight
adaptations).”

Name
It must have a meaningful name. This allows us to use a single word or short phrase to
refer to the pattern, and the knowledge and structure it describes. It would be very
unwieldy to have to describe or even summarize the pattern every time we used it in a
discussion. Good pattern names form a vocabulary for discussing conceptual abstractions.
Sometimes a pattern may have more than one commonly used or recognizable name in
the literature. In this case it is common practice to document these nicknames or
synonyms under the heading of Aliases or Also Known As. Some pattern forms also
provide a classification of the pattern in addition to its name.

Problem
A statement of the problem which describes its intent: the goals and objectives it wants
to reach within the given context and forces. Often the forces oppose these objectives as
well as each other (one might think of this as a "wicked problem" reminiscent of DeGrace
and Stahl, in their book Wicked Problems, Righteous Solutions).

Context
The preconditions under which the problem and its solution seem to recur, and for which
the solution is desirable. This tells us the pattern's applicability. It can be thought of as
the initial configuration of the system before the pattern is applied to it.



Forces
A description of the relevant forces and constraints and how they interact/conflict with
one another and with goals we wish to achieve (perhaps with some indication of their
priorities). A concrete scenario which serves as the motivation for the pattern is
frequently employed (see also Examples). Forces reveal the intricacies of a problem and
define the kinds of trade-offs that must be considered in the presence of the tension or
dissonance they create. A good pattern description should fully encapsulate all the forces
which have an impact upon it. A list of prospective pattern forces for software may be
found in the answer to question 11 of Doug Lea's Patterns-Discussion FAQ.

Solution
Static relationships and dynamic rules describing how to realize the desired outcome.
This is often equivalent to giving instructions which describe how to construct the
necessary work products. The description may encompass pictures, diagrams and prose
which identify the pattern's structure, its participants, and their collaborations, to show
how the problem is solved. The solution should describe not only static structure but also
dynamic behavior. The static structure tells us the form and organization of the pattern,
but often it is the behavioral dynamics that make the pattern "come alive". The
description of the pattern's solution may indicate guidelines to keep in mind (as well as
pitfalls to avoid) when attempting a concrete implementation of the solution. Sometimes
possible variants or specializations of the solution are also described.

Examples
One or more sample applications of the pattern which illustrate: a specific initial context;
how the pattern is applied to, and transforms, that context; and the resulting context left
in its wake. Examples help the reader understand the pattern's use and applicability.
Visual examples and analogies can often be especially illuminating. An example may be
supplemented by a sample implementation to show one way the solution might be
realized. Easy-to-comprehend examples from known systems are usually preferred (see
also Known Uses).

Resulting Context
The state or configuration of the system after the pattern has been applied, including the
consequences (both good and bad) of applying the pattern, and other problems and
patterns that may arise from the new context. It describes the postconditions and side-
effects of the pattern. This is sometimes called resolution of forces because it describes
which forces have been resolved, which ones remain unresolved, and which patterns may
now be applicable (see the answer to question 12 of Doug Lea's Patterns-Discussion
FAQ for an excellent discussion of resolution of forces). Documenting the resulting
context produced by one pattern helps you correlate it with the initial context of other
patterns (a single pattern is often just one step towards accomplishing some larger task or
project).

Rationale



A justifying explanation of steps or rules in the pattern, and also of the pattern as a whole
in terms of how and why it resolves its forces in a particular way to be in alignment with
desired goals, principles, and philosophies. It explains how the forces and constraints are
orchestrated in concert to achieve a resonant harmony. This tells us how the pattern
actually works, why it works, and why it is "good". The solution component of a pattern
may describe the outwardly visible structure and behavior of the pattern, but the rationale
is what provides insight into the deep structures and key mechanisms that are going on
beneath the surface of the system.

Related Patterns
The static and dynamic relationships between this pattern and others within the same
pattern language or system. Related patterns often share common forces. They also
frequently have an initial or resulting context that is compatible with the resulting or
initial context of another pattern. Such patterns might be predecessor patterns whose
application leads to this pattern; successor patterns whose application follows from this
pattern; alternative patterns that describe a different solution to the same problem but
under different forces and constraints; and codependent patterns that may (or must) be
applied simultaneously with this pattern.
Known Uses
Describes known occurrences of the pattern and its application within existing systems.
This helps validate a pattern by verifying that it is indeed a proven solution to a recurring
problem. Known uses of the pattern can often serve as instructional examples (see also
Examples).


