
Pattern Archive: A cross section of patterns forms
Thursday, February 6, 2003

Dale Evernden
IART 438

Faculty Advisor: Ron Wakary

Articles and papers On writing patterns

A typical Alexander Pattern

Pattern Archive:

Software patterns
• EPISODES: A Pattern Language of Competitive Development
• Rappel Pattern Language.

Interaction Design patterns
• Experiences -- A Pattern Language for User Interface Design
• Interaction Patterns in User Interfaces

Business Patterns
• Coplien—Organizational Patterns
• Business process reengineering
• Risk management pattern catalogue

Telecommunication Patterns
• Fault tolerant telecommunication pattern system

Pedagogical Patterns
• Fourteen pedagogical patterns (Bergen)
• A presentation pattern language

Game design Patterns
• Kreimeier game patterns
• Multiplayer game Design Patterns

Ecology Design Patterns
• Patterns of a Conservation Economy
• Ecopatterns—a pattern language for ecosystems

HCI Patterns
• Social Issues and Software Architecture

Appendices

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

On Writing Patterns

Seven Habits of Successful Pattern Writers, by John Vlissides
Patterns: The Top Ten Misconceptions, by John Vlissides
A Pattern Language for Pattern Writing, by Gerard Meszaros and Jim Doble

The Alexander Pattern Form

There are many variations on Alexander's [3] original definition of pattern, but the main
elements are these, as illustrated with a superb example from Alexander.

Name: A name for the pattern
Example: Window Place
Context: A context for the design problem
Example: Design of a residential room
Forces: Forces which require resolution
Example: People want to sit and also be in daylight.
Problem: A problem growing from the forces
Example: If all seating is away from the windows, then these forces are not resolved, and
people will always be dissatisfied in one way or the other.
Solution: A known solution, proven in practice
Example: Build seating into the window -- the traditional window seat.

A pattern language is a collection of patterns that can solve all the problems in a
particular domain. It may include a method for connecting patterns into whole
"architectures" for the domain. (Less ambitiously, a "pattern system" [5] covers only
parts of a domain.)

Archive
Software patterns:

Title: EPISODES: A Pattern Language of Competitive Development
Area of application: Software development
Form: Portland
URL: http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns?EpisodesPatternLanguage
Abstract:

• This pattern language describes a form of software development
appropriate for an entrepreneurial organization.

• These patterns tell what decisions can be made, in fact should be made,
to maintain continuous forward motion through iterative development.

• The language addresses a wide variety of development issues. These
have been organized into topic areas that could be described as top-down
or chronological.

Note: Explaining title--we are particularly interested in the sequence of mental
states that lead to important decisions. We call the sequence an episode. An episode
builds toward a climax where the decision is made.

Title: Rappel Pattern Language.
Area of application: Requirements analysis for object oriented software design.
Form: “problem, discussion, solution”
URL: http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns?RappelPatternLanguage
Example: Managing and Meeting Customer Expectations
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?CustomerExpectations
Abstract:
The goal of this language is:

• To provide a set of techniques and methods that will lead to a more thorough
analysis and understanding of a problem area

• To provide a framework for effectively capturing requirements so that a software
product can be evaluated, designed, built and tested

• To be able to trace the design of the system back to the original business and
system objectives

Interaction Design Patterns:

Title: Experiences -- A Pattern Language for User Interface Design
Area of application: software design
Form: Alexanderian
URL:
www.maplefish.com/todd/papers/experiences/Experiences.html#Interaction%20Style
Example:
www.maplefish.com/todd/papers/experiences/Experiences.html#Single%20Setting
Abstract: By using the patterns described here, you should be able to develop languages
that help you build environments that will be pleasurable and productive to use. You
won't find information here on how to use icons, pop-up menus, dialog boxes and other
interface gadgets. Our primary focus is on the higher level patterns found in all good user
interfaces: Patterns that help us design interfaces that provide the user with positive
experiences using well engineered software systems.

Title: Interaction Patterns in User Interfaces
Area of application: see title
URL: http://www.cs.vu.nl/~martijn/patterns/PLoP2k-Welie.pdf
Form: problem, usability principle, context, forces, solutions, rationale, examples,
known uses, counter example.
Example: See paper
Abstract: These patterns are focused on solutions to problems end-users have when
interacting with systems. The patterns take an end-user perspective, which leads to a
format where usability is the essential design quality.

Business Patterns

Title: Coplien—Organizational Patterns
Area of application: Organization management
Form: Alexanderian
URL: http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns?CoplienOrganizationPatterns
Example: http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns?FormFollowsFunction
Abstract:

• This is a family of patterns that can be used to shape a new organization and its
development processes.

• It addresses recurring patterns of interaction in organizations, and takes note of
recurring patterns that occur between those patterns.

• The patterns presented combine empirical observations with a rationale that
explains them.

• These patterns are drawn from peculiar organizations with peculiarly high
productivity. The patterns describe practices much different from those found in
most project management texts.

Title: Business process reengineering
Area of application: developing hyper-productive and adaptable companies that
simultaneously provide work environments that increase the quality of life and comfort of
their employees.
URL: http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?BPRPatternLanguage
Form: closely resembles the Canonical Form
Example: URL: www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?LeaderLeader
Abstract: The BPR pattern language addresses how an organization should evolve over
time. Issues addressed are structure, values, processes for embracing enterprise
technology.

Title: Risk management pattern catalogue
Area of application: Project management
URL: http://members.aol.com/acockburn/riskcata/risktoc.htm
Form: see appendix G
Example: Team per task
Abstract: Some project leaders seem consistently able to make projects succeed, but they
are typically unable to say how in a way that passes on the key information to other
project leaders. This catalogue of patterns is an attempt at meeting this need.

Telecommunication Patterns:

Title: Fault tolerant telecommunication pattern system
Area of application: Telecommunication
URL: http://www1.bell-labs.com/user/cope/Patterns/PLoP95_telecom.html
Form: Problem, context, solution, forces, resulting context, rationale
Example: People know best (appendix F)
Abstract: These patterns form part of a much larger pattern catalogue in use at AT&T.
The patterns presented here form a small partial pattern language within the larger
collection of patterns. We chose them because of their interconnectedness, the diversity

of their authorship, and because they are probably well-known to the telecommunications
programming community. Many of these patterns work in other domains, but for now, we
take telecommunications designers as our audience.

Pedagogical Patterns:

Title: Fourteen pedagogical patterns (Bergen)
Area of Application: computer science course development
Form: click here to go to appendix D
URL: http://csis.pace.edu/~bergin/PedPat1.3.html
Example: Early bird
Abstract: The patterns are not all at the same level of scale. Some speak to the overall
course organization and some to very low level things. The general flow is from large
structure (semester courses) to small scale (daily activities). A long term goal is to
develop them into a proper language. This will require supplementing them with others as
well

Title: A presentation pattern language
Area of application: Designing and giving presentations
Form: See appendix E
URL: Download PDF file here
Example: Motivation See appendix E
Abstract: Giving a good presentation is not easy. It takes a lot of discipline and creativity
to prepare and give a presentation that, on the one hand, is received positively by its
audience and, on the other hand, has the effects desired by the presenter. This paper gives
a handful of recommendations that aid in creating a good presentation. These
recommendations are put in pattern form and combined into a presentation pattern
language

Game Design Patterns

Title Kreimeier game patterns
Area Of application: Content development for games
Form: “problem, solution, consequences, examples, references.”
URL: http://www.gamasutra.com/php-
bin/login.php3?from=/features/20020313/kreimeier_01.htm
Example: Click here to go to appendix A
Abstract: The game design pattern method proposed here is concerned with content
patterns, as opposed to software engineering patterns [19], specializations of which that
have been proposed for game programming [33,20].

Title: Multiplayer game Design Patterns
Area of application: Multiplayer game design
Form: “problem, solution, consequence, examples, discussion, comments, other names”
URL:
http://www.abc.se/~m10383/Haven/General/Multiplayer_Design_Patterns.html#Format
Example: click here to go to appendix B

Abstract: this document is a collection of patterns commonly used in multiplayer games.
It is not about patterns specific to multiplayer games but the way the patterns are
approached and described is focused on multiplayer designs.

HCI Patterns

Title: Social Issues and Software Architecture
Area of application: HCI
URL: click here
Form: very unique (click here to go to appendix C)
Example: “Variation behind interface” click here
Abstract: N/A – this pattern was included in this list of example based on it’s unique
form.

Ecology Patterns

Title: Patterns of a Conservation Economy
Area of Application: building ecologically restorative, socially just, and reliably
prosperous societies.
Form: Closest to Alexandarian
URL: http://www.conservationeconomy.net/INDEX.CFM
Example: “Access to knowledge” (click here)
Abstract: “On this site, fifty-seven patterns provide a framework for an ecologically
restorative, socially just, and reliably prosperous society. They are adaptable to local
ecosystems and cultures, yet universal in their applicability.”
Note: This site provides a cool little map that gives the reader a meta perspective of the
language as a whole—makes for a better point of entry.

Title: Ecopatterns—a pattern language for ecosystems
Area of application: Ecological design
Form: see template here
URL: http://www.designmatrix.com/pl/ecopl/index.html
Example: Garbage separation at the source
Abstract: This work is based on the Ecopatterns course, taught by Gary Swift and Ken
Asplund at the School of Design, California Institue of the Arts, in 1973, where the
pattern language was applied to ecological design problems.

Appendix A (back to game design)

Paper-Rock-Scissors
Problem: Avoid a dominant strategy that makes player decisions a trivial choice.

Solution: Introduce nontransitive relationships within a set of alternatives, as in the game of
paper-rock-scissors.

Consequence: The player is no longer able to find a single strategy that will be optimal in all
situations and under all circumstances. She has to revisit her decisions, and, depending on the
constraints imposed by the game, adjust to changing situations, or suffer the consequences of an
earlier decision.

Examples: The example given by Andrew Rollings is the set of warrior-barbarian-archer from
the Dave and Barry Murray game The Ancient Art of War (Broderbund 1984). He also describes
Quake's weapon/monster relations in similar terms: Nailgun beats shambler, shambler beats
rocket launcher, rocket launcher beats zombie, zombie beats nailgun [28].

References: Chris Crawford (see "Triangularity" in [15]) provided the first explicit description of
the use of nontransitive relationships. Andrew Rollings' discussion of examples uses game theory
including detailed payoff, as well as informal fictional designer dialogs.

Appendix B (back to game design)

Multiplayer Game design pattern example
Category—Narrative
Title: Receipt
Problem: To allow players to make progress in a storyline
Solution: Introduce some sort of milestone or landmark action representing the essence of the
achievement.
Consequence: In the eyes of the player, the receipt will represent progress.
Examples: If a game has progress, it is either a continuous scale or discrete events. Sometimes
discreet events are visible to the player, such as a response in a MUD or MMORPG NPC dialog.

Consider the following MMORPG dialogue between player ("Neo") and NPC ("Child"):
Child says,

Instead, only try to realize the [truth].
Neo says,

what truth
Child says,

There is [no spoon].
Neo says,

no spon
Neo says,

what no spoon
Child says,

There is only your self.
In this dialogue, the action that the player needs to perform to advance is clearly marked with
square brackets. In some games you may see these called triggers, since they trigger an event in
the game world.

The Receipt usage in this dialogue is the response to the character's repetition of the key phrases
("truth", "no spoon") - these responses are examples of visible receipts. They let the player know
that he is making progress. Upon hearing the word "truth", the NPC responds by revealing new
keywords.

Comment: This is a special case of the Milestone Pattern. See also the Requirement Pattern to
which this is the companion pattern. The Receipt Pattern is not specific to multiplayer scenarios.

Appendix C: (back to social issues pattern)
Form --- Social Issues and Software Architecture

Two templates are used, each showing a common pattern of forces with a useful
resolution. A principle is a reaction to a problem or force, in which a design force and its
counterforce are declared. A design decision is a reaction to a set of forces, in which a balance
point is declared. The principles may be found and used on many projects.

Principles are written as:
Intent: The intended benefit of the pattern;
Force: An external force acting on the project or design;
Principle: A driving force, from a freely chosen principle;
Counter: A counter and limit to the principle. (In each pattern, the counterforce is that
too much of a good thing is not a good thing. Adding interfaces and subsystems makes
the system, slower, and eventually, harder to understand.)

Design decisions are written as:
Intent: The intended benefit of the pattern
Context: The situation in which the decision takes place;
Forces: What is pulling the designer in various directions;
Resolution: A suitable resolution for these forces in this context.

Appendix D (back to 14 pedagogical patterns)
Pedagogical pattern format

From the feedback acquired from participants at the pedagogical patterns workshops and those
who have provided feedback in other ways, a new format for the patterns has been drafted and is
open for review.
This format contains the following sections:

NAME: pattern name
DATE: date of last update
AUTHOR: name of person submitting the pattern
THUMBNAIL: short description (abstract) of the pattern
PROBLEM / ISSUE: problem, challenge, or issue that the pattern is addressing
AUDIENCE / CONTEXT: For what type of learners, in what context, is this pattern
appropriate?
FORCES: What makes the problem a problem?

SOLUTION: the solution this pattern proposes to the problem
DISCUSSION: resulting content/consequences and implementation issues
SPECIAL RESOURCES: resources needed to use this pattern (things that are not ordinarily
available to the person using the pattern)
CONTRAINDICATIONS: when not to use the pattern, including any cultural dependencies
RELATED PATTERNS: The author may want to peruse the web page (and other sources) and
comment on any existing patterns related to this one.
EXAMPLE INSTANCES: specific uses of the pattern (who, how, etc.)
REFERENCES / ACKNOWLEDGEMENTS: any citations and/or individuals who should be
acknowledged as contributing to this pattern

Appendix E (back to presentation patterns)
Presentation Pattern Example

Title: Motivation
Problem
How can you rouse the audience's interest in your presentation?
Context
You are at the beginning of your presentation and already have
the audience's attention.
Forces
* In the very beginning the interest of the audience is easiest to
rouse because of their natural curiosity. Later on it becomes
more difficult.
* The audience may be sceptical if the content of your presenta-
tion could be interesting.

Solution
Motivate why you are giving this presentation. Stress the point
why the audience should be interested in your presentation.
For instance, ask a thought-provoking question that leads to
your subject, or give an EXAMPLEof a pressing problem you are
going to deal with in your presentation. If appropriate, tell the
audience about your objective.
Resulting Context
You have the audience's attention and interest. Now, if necessary,
you should provide the basis for following the presentation by
supplying an OVERVIEW and a KNOWLEDGE BASELINE
.
Rationale
Interest creates attention that lasts until the end of your presen-
tation. In contrast, an ICEBREAKER rouses the audience's atten-
tion only temporarily.
Example
The presenter continues, "But now your dangerous and laborious
days are over. For now Can-Guru's superb new Can-O-Pna is
available. Let me tell you more about it."
Related Patterns

MOTIVATION is often tightly coupled with ICEBREAKER. See the
Related Patterns section of

Appendix F (back to telecommunication patterns)
Pattern: People Know Best
Problem: How do you balance automation with human authority and responsibility?
Context: High-reliability continuous-running systems, where the system itself tries to recover
from all error conditions.
Forces: People have a good subjective sense of the passage of time, and how it relates to the
probability of a serious failure, or how it will be perceived by the customer.

• The system is set up to recover from failure cases. (Minimize Human Intervention)
• People feel a need to intervene.
• Most system errors can be traced to human error.

Solution: Assume that people know best, particularly the maintenance folks. Design the system
to allow knowledgeable users to override the automatic controls.
Example: As you escalate through the 64 states of Processor Configuration (Try All Hardware
Combos), a human who understands what's going on can intervene and stop it.
Resulting Context: People feel empowered; however, they also are responsible for their actions.
This is an absolute rule: people feel a need to intervene. There is no perfect solution for this
problem, and the pattern cannot resolve all the forces well. Fool Me Once is a partial solution, in
that it doesn't give the human a chance to intervene.
Rationale: There is no try; there is only do or fail-Yoda, in Star Wars.

Consider the input command to unconditionally restore a unit. What does "unconditional" mean?
Let's say that the system thinks that the unit is powered down; what should happen when the
operator asks for the unit to be restored unconditionally? Answer: try to restore it anyhow, no
excuses allowed; the fault detection hardware can always detect the powered-down condition and
generate an interrupt for the unit out of service. Why might the operator want to do this? Because
it may be a problem not with the power, but with the sensor that wrongly reports the power is off.

Notice the tension between this pattern and Minimize Human Intervention.

Author: Robert Gamoke, 1995/03/24

Appendix G (back to risk management patterns)

Risk management form description
A risk management catalog should give both diagnosis aid and prescription. Therefore, I am

suggesting here the following template for these risk management entries:

• Name - The name of the pattern, and person nominating it.
• Chapter - The primary and secondary issues addressed.
• Sensation - What you might be feeling like at this time
• Symptoms - Relevant characteristics of the project at this time

• Forces - Forces pushing you in particular directions
• Try this - A recommendation based on experience
• Counterforce - What causes you to stop applying the pattern
• Examples - Situations where the recommendation proved useful
• Principles Involved - Why the pattern appears to work
• Related Up: Higher- and Down: Lower-level patterns
• Reading - Further reading as referenced in the text.
• Comments - Comments from readers (like you) about the entry. Send your comments!

