

Recent advances in the microelectronic industry have made wide-spread physical and economic access to high
technology tools a reality. Before the full potential benefits of these tools can be realized , however, them must
become accessible in the cognitive sense as well. This we can discuss from two points of view: that of the

Buxton, W. & Sniderman, R. (1980). Iteration in the Design of the Human-Computer Interface. Proceedings of
the 13th Annual Meeting, Human Factors Association of Canada, 72-81.

Issues pertaining to designing effective human-computer interfaces are discussed. This
presentation focuses on the special case of providing congenial computer-based tools to end users
who are expert in their own area, but who may be technologically naive. In so doing, we draw
examples from a particular study of designing computer systems for professional musicians. This
experience brings to light many issues which have relevance beyond the specific application of
music. These include the importance of effective prototyping tools, the use of test subjects during
the design process, the importance of developing methods of performance evaluation, and more
generally, the value of taking an iterative approach to design.

ITERATION IN THE DESIGN OF THE

HUMAN-COMPUTER INTERFACE1

 and Richard SnidermanWilliam Buxton

Structured Sound Synthesis Project (SSSP)
Computer Systems Research Group
University of Toronto
Toronto, Ontario

ABSTRACT

1. Introduction

6/22/03 9:49 PMIteration

Page 1 of 16http://www.billbuxton.com/iteration.html

professional programmer, who must be able to structure complex programs. Using this technology, and that of
the end user, who while being quite advanced in his own application area, is usually a layman in computer
technology. Each case is an area of study in Human Factors with its own special properties, given the two
groups differing abilities to deal with technologically-based problems.

In attempting to design a system to "fit" the end user, behavioral issues must be considered and understood.
Given the limitations of the analytical tools available, and our inability to adequately predict system
performance in "real-world" situations, it is unlikely that the first implementation of any user interface is going
to function as well as it could or should. Under these circumstances, an alternative is to take an iterative
approach to design: keep trying until you get it right. However, two problems become immediately obvious.
First, how do you know when you have got it "right", and why it is "right". Second, how can such an iterative
approach be made practically and economically feasible?

In this paper, we are mainly concerned with tie problems of the end user. In the discussion, we follow the
premise that if technologically-based tools are adopted , it is because the scope or magnitude of the user's
problems have outgrown current techniques for dealing with them. Adopting the new tool must, therefore,
eliminate problems, rather than create additional, or alternative ones.

The consequence of this premise is the specification that the new tool must adapt to the user, rather than force
the user to adapt to it (which is too often the case today). By this, we mean that the system must "fit" the end
user's motor skills, problem solving strategies, and cognitive organization.

The problem is, how do we evolve such a "fit" in any structured, or methodological way? Atwood et al
(1979), Ramsey et al (1978), and Ramsey (1979) provide annotated bibliographies covering much of the
relevant literature. In addition, Martin (1973) and Shneiderman (1980) both provide useful texts which address
the problem. In spite of this work, however, it is important to recognize that the literature still falls short of
providing the designer with guidelines sufficient to enable him to predict the effectiveness of' one interface
design compared to another.2 The design of' the user interface is still an "art" rather than a science (Baecker,
1979)

Faced with a problem whose solution can not be derived from the literature, the designer of the human
interface is confronted with two alternative strategies. On the one hand, a scientific approach can be followed,
in which formal experiments are run, in an attempt to fill in existing gaps in our knowledge. On the other hand,
an engineering approach can be taken, in which some ad hoc strategy is followed in order to deliver a system
which was typically needed "yesterday". Due to pragmatics, the latter approach is by far the most prevalent
although work such as Barnard et al. (1981) is an important example of the former.

Our objective in this paper is to present an approach to design which, on the one hand takes the pragmatic
engineering approach, but at the same time attempts to accumulate data which will help form the basis for a
more scientific understanding of the problem area. In so doing, we will draw examples from a case study in
computer music, an appropriate study which has served as the test bed for many of the concepts presented.

2. ITERATIVE DESIGN

In the approach described, we think of each iteration of a design as being a prototype whose purpose is to test
a critical mass of the overall problem. On implementation, each prototype is tested by "guinea pig" users
whose performance is monitored. Based on this experience, the performance of the prototype is evaluated, and

6/22/03 9:49 PMIteration

Page 2 of 16http://www.billbuxton.com/iteration.html

It is impossible to give a simple solution to any of these questions; however, our experience over the past few
years leads us to believe that there are certain general approaches which can be taken in each of these areas,
whose cumulative effect is rendering the iterative approach viable in many applications. The next three
sections will discuss these issues in more detail.

The question of what to prototype relates to classic problem reduction. The designer must reduce the problem
space into an ordered set of manageable sub-problems. Some of these will require testing in prototype form in
order to be properly dealt with. To be as focussed and as efficient as possible it is essential that the designer
have the ability to isolate what constitutes a "critical mass" of the problem under investigation. In addition, it is
essential that the designer develop, and have at his disposal "prototyping tools".

3.2.1 Too often the progress of design efforts has been severely impeded because of a lack of
recognition of the importance of viewing the programming environment as an integrated whole. Systems are
adopted because they have the "latest" technology in some area, with little or no thought as to what they
support in the way of text editors, graphics packages (such as GPAC: Reeves, 1978), programming languages,
or debugging tools (Crossey, 1977). But the suitability of any particular system can only be evaluated in terms
of its ability to support experimental programming. This is an issue which is discussed more fully by Deutsch
and Taft (1980). For a specific example, we will focus on one case: the influence of high-level languages on
the effectiveness of the prototyping environment.

the next iteration planned. Returning to the general questions posed above, we see that the successful use of
the iterative approach is intimately linked to the following three issues:

What is to be prototyped, and how?
What is observed, and how?
How are results evaluated, and subsequently applied?

3. PROTOTYPING

3. 1 Introduction

Prototyping tools are software tools and modules which facilitate the design, implementation, and maintenance
of application software. They are the tools, without which, an iterative approach to design would be
impossible. From our point of view, the designer should strive towards developing his programming
environment to the point where with any problem, each reasonable alternative is equally accessible for testing.
The trap of the "path of least resistance" should be avoided, thereby reducing system imposed biases.

We feel that at any point that a design must be accepted because of the expense of testing a plausible
alternative, attention probably should be redirected to the development of better prototyping tools, rather than
prototypes themselves. The remainder of this section is devoted to a more detailed discussion of such tools,
and how they function at different levels.

3.2 System Level Tools

Introduction:

3.2.2 Most problems to be prototyped involve complex concepts. In order to be
economically encoded, it is essential that the language used permits the succinct expression of the concepts to

High Level Language:

6/22/03 9:49 PMIteration

Page 3 of 16http://www.billbuxton.com/iteration.html

3.3.1 : The basis of a good prototyping environment is the development of a set of well defined
modules, or "building blocks", which facilitate the efficient construction and testing of prototypes. The
adoption of such a tool-building paradigm is facilitated in recognizing that in most "real-world" situations
prototyping is restricted to a limited number of classes of problem. We can often isolate recurring types of
transactions for which high-level support (or "breadboarding”) modules can be provided to the applications
programmer, thereby facilitating his ability to implement a particular system. For purpose of illustration, we
present examples of such modules developed in the course of our research into computer music Systems.

be tested, and their inter-relationships. Many of the problems of interest to the Human Factors researcher
present real problems when it comes to selecting a suitable high-level language for their investigation. Take,
for example, the problem of specifying the user interface and causal relationships for some complex real-time
control task. As driving an automobile demonstrates, the human operator is capable of coordinating the
concurrent expression of several channels of information. However, if the receiving end of these parallel data
channels is a digital computer, we are hard pressed to find a high-level programming language which will
facilitate the terse and concise specification of how these data are to control some ongoing process.

There are various consequences to the above observations. First, inappropriate specification/implementation
languages constitute a major stumbling block in computer-based Human Factors research. Languages make a
significant difference, and should be carefully considered by the researcher. As Iverson (1980) points out,
notation is an important tool of thought. Second, research into languages which support communicating
parallel processes, data-driven processes, graphics interaction, real-time event scheduling, and the automatic
monitoring of user actions, is of critical importance. Baecker (1979) and Green (1980) are examples of our
ongoing work in this domain.

3.3 Application Level Support

Introduction

3.3.2 : Menu-based interaction is an important, recurring component in human-computer
dialogue. It is accompanied by two main classes of problems. First, there is the graphics design problem. This
encompasses menu layout and design. Second, there is the problem of defining the cause-and-effect
relationships that occur as the result of interaction with the menu in various contexts. Unless supported with
adequate tools, the undertaking of these two tasks not only retards the prototyping process, but the resulting
low-level complexity consumes design resources which are limited, and which should be directed towards
application-oriented problems.

Menu System

Recognizing this problem, we have invested considerable energy in designing, implementing, and
documenting a system which can serve as a template for menu-based interaction (Buxton, Reeves, Patel, and
0'Dell, 1979). In using this system to implement menu-driven software, the designer need only "plug-in"
pertinent values, and the system will automatically handle initialization, event detection, and command
invocation.

The menu system is an interesting example of how a prototyping environment can be used to "bootstrap"
itself. That is, the package has been expanded and refined as observation and evaluation have provided
insights into the nature of menu based dialogue.

In terms of the two problems of menu based interaction (layout and definition of causal relationships), the
current menu system addresses the latter. To be complete, we must now pursue the issue of developing a tool
which allows the user to apply techniques of computer aided design in menu layout, thereby generating the
values to be "plugged into" the template provided by the existing module. Thus, through an iterative

6/22/03 9:49 PMIteration

Page 4 of 16http://www.billbuxton.com/iteration.html

approach, we see how our reach in prototyping concepts efficiently has been extended: a high-level language
was used to implement the graphics package, which was used to implement the existing menu system, which
will be used to implement the menu layout system, which will be used to efficiently implement application-
level software. Each step serves to improve the applications programmer's ability to undertake his task. In all
of the above, the key point that emerges is the importance of balancing efforts between the development of
prototypes, and the development of prototyping tools, and using the same approach of iterative design in each.

3.3.3 : One recurring problem which we have observed with computer naive users has to
do with retrieving previously defined data, or files. This problem is manifest in different ways. First, having
learned to associate particular data with a unique file name, the user has difficulty as a result of the ambiguity of
the possibility of two co-existing versions of that data, one in primary memory, the other on disk. On retrieval,
for example, which data is referenced? This conceptual problem is further complicated by difficulties and
awkwardness arising from having to remember file names, remembering their spelling, isolating files of a
particular type from among the many types which may exist, typing file names, and difficulties in "browsing"
through files.

Directory Windows

All of these problems share a common trait: they place a burden on the user's memory and cognitive structures,
a burden which is completely secondary to the task for which the computer was originally adopted. They are
problems of means, rather than content, and consume vital resources which should be allocated to those
problems which are the user's real concern.

These problems cut across many application areas, and for many classes of systems, common modular tools
can be applied to their elimination. The resultant benefit to the user is a more convivial interface, and to the
designer, a set of high level building-blocks which facilitate the implementation of prototype systems.

Our approach to developing such modules is based on what we have called "directory windows". A directory
window is a region on the user's screen which allows files of a specified type t6 be viewed and accessed. The
code which supports these windows consists of a set of well documented modules which allows the
programmer to specify the size and placement of the window on the screen, the type of file onto which the
window looks3, the (alternative) means for scrolling through and selecting from the files, and the source and
representation of the files in the window. The examples which follow illustrate these points, and relate them to
the problems associated with file retrieval which were outlined at the start of this section.

 Example of a simple directory windowFigure 1:

In its simplest incarnation the window is a rectangle containing a list of file names, one of which appears
between a central pair of horizontal lines. Each name is that of an existing file. Significantly, all files whose
name appear in a particular window are of a specific type: for example, musical scores. The file whose name

6/22/03 9:49 PMIteration

Page 5 of 16http://www.billbuxton.com/iteration.html

appears between the horizontal lines is known as the "current" file. In the context of a score editor, therefore,
the name between the horizontal lines would be the name of the score being edited.

Continuing with the example, different files can be loaded into the editor by causing their names to appear
between the horizontal lines. This can be accomplished by various means, including pointing at a name visible
in the window4, or using some transducer to "scroll" names through the window, thus accessing file names
previously outside the window.

The importance of this mechanism, besides its generality, lies in the fact that the user can access files without
having to remember names or spelling, and without cumbersome typing. As well, the applications programmer
is provided with a mechanism to restrict data presented to only that which is relevant in a particular context,
since all files are keyed by type.

A problem already alluded to derives from the ambiguity which results from allowing two different versions of
a file to co-exist - one in primary memory, and one on disk. Through the use of the "switch" illustrated in
Figure 2, a self consistent method is provided to help deal with the problem.

(a) Accessing scores from disk. (b) Accessing scores from primary memory.

 Directory Window Switches.Figure 2:

Namely, with the switch position reading "Saved Scores" , as illustrated in Figure 2a , we have an explicit
message indicating that the files onto which the window looks are disk files which have been previously
saved. On the other hand when the switch reads "Working Scores", as illustrated in Figure 2b, the user is
provided with an explicit reminder that the files onto which the window looks are temporary working versions,
stored in primary memory. This user-controlled switch provides a means of retrieving either the working or
saved version of a file, as well as a mechanism for verifying whether a particular file has been saved.5

A final point relates to how directory windows facilitate browsing through files, and how certain types of files
can be selected according to contents, rather than (an often arbitrary) name. This is seen in Figure 3, where an
iconic representation of the file data (in this case time-varying functions) is provided in addition to the file name.

6/22/03 9:49 PMIteration

Page 6 of 16http://www.billbuxton.com/iteration.html

 Iconic Representation of File ContentsFigure 3:

The last example illustrates how the concept of a directory window is independent of external representation,
in spite of the fact that a self-consistent method of interaction is maintained. This is an observation which can
be, and should be, developed in future research. Our experience has shown that an appropriate iconic
representation of file data substantially improves the user interface in many real-world contexts. Prototyping
tools should, therefore, expedite experimentation in this regard.

3.3.4 : Generically, music composition and performance fall within the realm of
computer aided design and control applications. One type of transaction observed to be recurring in these
applications is the adjustment or setting of scalar values, or parameters. That is, the kind of transaction that
might involve turning a knob, adjusting a potentiometer, or typing a number. Since this is a recurring
transaction, we have developed another prototyping tool which, again, facilitates "bread-boarding" systems by
providing well documented, highly parameterized building-block modules. These modules, we call graphic
potentiometers.

Graphic Potentiometers

Three graphic potentiometers are shown in Figure 4.

Simple Graphic PotentiometersFigure 4:

Visually, they represent a physical potentiometer whose current value is shown in an analogue (high-low)
manner, by the position of a triangle representing the "handle". The setting can be adjusted by dragging the

6/22/03 9:49 PMIteration

Page 7 of 16http://www.billbuxton.com/iteration.html

The concept of prototyping tools has been introduced. Examples have been given from both a general
systems, and an applications specific level. The point emphasized was that concentrating on developing a
suitable prototyping environment will facilitate pursuing an iterative approach to design. Furthermore, through
the provision of good prototyping modules, the designer is better able to concentrate on the principal problems
under investigation, rather than becoming trapped in a morass of low level secondary issues. Finally, it was
observed that the iterative approach of prototype-observe-evaluate can be applied to prototyping tools
themselves, thereby allowing the prototyping environment to be bootstrapped in a cost-effective way.

handle up or down using some pointing device, or alternatively, any other transducer supported by the graphics
package. On adjustment, two things happen. The visual display is updated, as is the parameter associated
with the potentiometer - both in real-time. Thus, using an example from the figure, if there was a tone
sounding while the pitch potentiometer was being adjusted, the resulting acoustical change would be heard.

Thus far, the graphic potentiometer has been discussed in only analogue terms. Notice, however, that a
numerical read-out of the current value of the parameter appears in the box above a potentiometer. As the
parameter is adjusted, this read-out is also dynamically updated. Furthermore, indicating the box with the
pointing device enables the user to directly specify a value by typing. This is illustrated in Figure 5. There are
two important points to be made in this example. First, the "tracking symbol" which was a "+" in the previous
example has now become an icon representing a terminal. This provides a visual prompt that a value is to be
typed. Second, while the value is being input, the digits being typed appear directly within the indicated box
(rather than at the bottom of the screen to be posted in their final position on completion). Both features have
the important property that they provide visual feedback and messages at that location on the screen on which
the user's attention is currently focussed.

Figure 5:

Our observation is that this property, which is too often absent, is extremely effective in reducing operator
errors.

3.4 Summary

4. OBSERVATION

6/22/03 9:49 PMIteration

Page 8 of 16http://www.billbuxton.com/iteration.html

The second key aspect of the iterative approach concerns techniques for collecting data for interface
evaluation. An implicit assumption in our discussion is that the interfaces to be evaluated have been
implemented in prototype form, and are to be tested under pseudo "real-world" conditions. Again, the point is
that until improved predictive and analytical models are developed, we can only determine the relative
effectiveness of alternative interface designs through the observation of test subjects performing representative
tasks.

4.2.1 involves a researcher standing over the subject and simply watching the
interaction. It allows the human observer to catch basic low-level problems in the interaction which the user
might not be aware of due to concentration on the higher cognitive levels of the task being performed.

4.1 Introduction

The appropriateness of alternative techniques for observation are obviously highly dependent upon what is
being tested, and how it is to be evaluated. In order to better understand the key alternatives available, we
devote the remainder of this section to their enumeration and characterization. The discussion will, by
necessity, be cursory in nature.

The techniques discussed divide into two main categories -- those which do not involve verbalizations by the
subject, and those which do. The first group is used to directly observe the behaviour of test subjects; however,
the great deal of mental activity and knowledge which the subject employs when using the prototype cannot be
observed directly. This is where the group of verbal techniques plays a role (Bainbridge, 1979). In order to
try and learn how and why a user makes decisions, it is necessary to minimize the distortions introduced in the
user's behaviour by having to give a verbal report. Similarly, it is necessary to minimize the distortions in the
report itself as a description of the user's behaviour.

4.2 Non-Verbal Techniques

Observation by Researcher

The way in which software expects the digit ‘1' to be specified can serve to illustrate one type of insight to be
gained through this approach. A researcher watching a user's operation of the teletypewriter might notice a
predisposition on the subject a part to enter, instead, the letter 'l', due to previous experience with a common
typewriter. Even if this happened repeatedly, it might not come to the researcher's attention except by direct
observation, since the subject might not ever report it.

A drawback of using this technique regularly is the practical problem of having researchers available
constantly at sessions.

4.2.2 provides a more permanent record of the session, one which may be viewed
repeatedly at the researcher's leisure. This technique is obviously more expensive. As well, it poses the
problem of having to decide which aspects of the interaction to film. If the system involves input and output
transducers spread over a relatively large area, then all aspects of the interaction could not be easily filmed
simultaneously.

Observation by Video Tape

The technique has been used by Card et al (1980), and at MIT by Bamberger . In the latter example, the
technique was used to observe children carrying out a musical problem solving task involving the arrangement
of a set of pitched bells. The children are videotaped while they perform the task and at the same time, a
researcher asks the child what he is doing and the reasons behind the action. After the session, the videotape
and tape-recorded responses are analyzed to try and determine the child's cognitive organization which guided
his behaviour during the task.

6

6/22/03 9:49 PMIteration

Page 9 of 16http://www.billbuxton.com/iteration.html

4.3.1 involves the subject reflecting on specific aspects of the session.
The impressions can be expressed orally (to an attendant researcher or tape recorder) , or they can be written.
They can be expressed either during or after the session.

4.2.3 is particularly efficient since it involves collection of session data by the
system itself. The most basic example of this is a non-graphical dialogue on a teletypewriter, which results in
an exact transcript of the session. More generally, modules embedded in the system can keep records of the
interaction (perhaps time stamped) for future analysis by the researcher. These modules themselves can be
considered to be prototyping tools, as they are used to facilitate the development of application software by
providing a convenient method of data collection. A drawback of this technique is that it does not afford a way
of evaluating the kinesthetics of the interaction.

Observation by the System

An example of this technique is an extension of the menu system outlined in Section 3.3.2. As each item of
the menu is chosen, the system can log the time, the name of the menu item, and its screen location. The tool
provides a record of the order and timing of menu item activation, as well as a graphical display of the user's
hand motion.

This is clearly a graphics tool which can be used in a number of ways. It can give a clear view of areas of the
menu which are used to a great extent, thereby providing insights into a more effective positioning of menu
items. It can be used to help develop other tools which would enable a user's session to be animated" or
"played back" for subsequent analysis. However, there is still a great deal of work which must be done before
the data provided by this tool can be exploited to its fullest. For example, it is not clear that if there is heavy
traffic between two menu items, that those two items should always be in close proximity.

4.3 Verbal Techniques

Report of Impressions by the Subject

Introspection during a session is advantageous for obtaining fresh accurate detail from the subject. If spoken
and recorded ,it can be neatly synchronized with aforementioned techniques of observation. If written, the
comments can be assisted by any system facility which allows messages to be recorded. In this case messages
can be time stamped in order to place them in context during analysis. The danger with any explicit reporting
by the user during the session is that it distorts timing data for task performance, and diverts the users attention
from the applications task at hand.

Recording impressions after a session allows time for user introspection leading to a more coherent view of the
session as a whole, rather than as a series of individual interactions.

4.3.2 involves the subject keeping an explicit record of his
actions and thought processes during a session. Either written or verbal, the subject maintains a running
commentary on what he would like to do, how he is going about doing' it and why. This type of record allows
a researcher to discover points at which the interaction is unsatisfactory, even if the subject is unaware that
there is a problem. These types of problems are not readily discovered by the previous technique, which only
records user perceived problems and points of interest. We distinguish between the two approaches, report of
impressions and detailed commentary, since each provides a different kind of data. The former highlight
specific problem points, the latter addresses more global aspects of the user's problem-solving strategies.

Detailed Session Commentary by the Subject

A drawback of detailed commentary is that the amount of detail needed puts a heavy demand on the user
during the session, a point which must be taken into account when designing tasks to be observed using this

6/22/03 9:49 PMIteration

Page 10 of 16http://www.billbuxton.com/iteration.html

A set of techniques have been presented which can be used to collect data concerning the behavior of a subject
carrying out specific tasks using an interactive computer system. Combined with working prototypes of
various user interface designs, the basis for an environment for interface evaluation and comparison is
provided. The prime question remaining concerns establishing criteria for evaluation, in order to guide the
determination of what data is to be collected, and how.

Our objective is to develop the ability to design effective user interfaces in a consistent and methodological
way. As a prerequisite, we must first refine our abilities to quantitatively compare and evaluate designs. This
we view in two contexts: first, through the evaluation of data collected during benchmark tests involving
subjects performing tasks on prototype systems; second, evaluating designs before implementation, according
to models derived from experiment. We see the iterative approach as a means of carrying out the former, so as
to achieve the latter. As the experimental approach derives improved models, the need for iteration will
become eliminated, or be able to be applied to higher-level problems of the user interface.

approach. One alternative is to have the subject provide the commentary while viewing a play-back of the
session on video tape. Finally, as Bambridge (1979) points out, one must be careful in making assumptions
about the user's knowledge, based on such commentaries.

4.3.3 provides a means of minimizing distortions arising from false
conclusions derived in analyzing user reports.

Interrogation by the Researcher

Questions need not be posed during the session. They can be asked during or after, either verbally or in
writing. Well placed questions can help to quickly clear up confusion on the part of both the subject and
researcher.

Questionnaires are useful tools in interrogation, and have been used by Barnard et al (1981), and Dzida et al
(1978) in studying the user interface. The advantage in this approach is that it provides results which are more
structured, and easier to analyze than the free-form commentaries of the other verbal techniques discussed.
They are, however, less adaptable to circumstances.

4.4 Summary

5. EVALUATION

Card et al (1978) is a good example of the approach. The study investigated alternative techniques for
pointing at, or selecting, text items displayed on a CRT. Building on these results, another study was carried
out (Card et al 1980) which resulted in a model known as the "keystroke model" , which (within a restricted
context) has proven effective in predicting user performance. The argument could still be made, however, that
techniques other than testing under real-world conditions could b~ used to derive the results to refine such
models. While this is undoubtedly true in some cases, there are some real pitfalls of which one must be
aware. First, one of the prime benchmarks in determining the effectiveness of a user interface concerns
temporal response. It is difficult to imagine many alternative techniques which take adequate account of this
parameter. Second, studies such as Barnard et al (1981) have demonstrated that (even expert) users are often
unreliable in their prediction of the "goodness" of simple interfaces when presented with the design on paper,
prior to implementation. Even if tests are run on actual systems, the subjects' perception of the relative
goodness of a design is unreliable when compared to alternative measures of performance. This is
demonstrated in Moses and Maisano (197~), for example. The purpose of the study was to examine user
performance in finding the shortest route between two cities, when presented with different methods of map

6/22/03 9:49 PMIteration

Page 11 of 16http://www.billbuxton.com/iteration.html

display. The alternatives differed in how the change from one displayed map to another was effected: either
discrete changes with 0, 25, or 50 percent overlap, or continuous changes The result of interest here is that
while most subjects preferred the continuous alternative, that alternative consistently resulted in the longest
solution time to the problem!

Based on the above, it is clear that often we must not only test designs under simulated real-world conditions,
we must also develop well defined criteria for measuring performance. Dzida et al (1978) conducted a study to
establish such criteria. The results are summarized below:

Self-Descriptiveness:

transparency of dialogue organization and dialogue sequence at any time;
clearly arranged presentation of system functions;

User Control:

process canceling possible without detrimental side effects;
command language syntactically homogenous;

Ease of Learning:

user manuals superfluous;
no special data processing knowledge needed to use system;

Problem Adequate Usability:

free formatted command input accepted;
minimal need for the user to perform clerical or housekeeping activities;

Correspondence with User Expectations:

similar system behaviour in similar situations;
feedback provided to enable user to recognize effects of his input;

Flexibility in Task Handling:

system messages with different levels of detail dependent on user status;
shorter ways for trained users to perform tasks;

Fault Tolerance:

only partial retyping required if previous input was erroneous;

6/22/03 9:49 PMIteration

Page 12 of 16http://www.billbuxton.com/iteration.html

To these, we would add two (rather surprising) omissions:

Even if we accept the above list as complete, and develop the ability to assign a quantitative measure for each
when examining a particular design, we still fall short of being able to provide practical tools to the designer of
the user interface.

Rather than give solutions, or results, the thrust of this paper has been to point out problems. In particular, we
have focused on lack of scientific understanding of the human-computer interface in interactive systems. This
absence has been seen in the lack of effective models which can be used by the designer in order to predict and
evaluate the performance of interface designs. As a means of evolving such models, an iterative process has
been proposed. Central to the approach was the active participation of test subjects in experiments. To support

typical typing errors tolerated.

Time Factors:

response time for different types of functions;
time required to undertake a given task;

The Number of Errors Typical in Performing Representative Tasks

First, in any real environment there is a complex relationship among these different measures. For design
purposes, we either have to restrict our predictive model to one or two measures (such as task performance time
in Card ., 1980), or develop our ability to analyze the transactions encompassed within a particular
interface according to the cross-relationships and relative weights of these criteria. The importance of the latter
is seen in a study undertaken in our lab (Hogg and Sniderman, 1979). The objective was to evaluate and
characterize alternative graphical techniques for specifying the pitch/time information of notes making up a
musical score. When measured against the criteria outlined above, each technique tested came out with
different results. The point to make, however, is that out of context no "best" solution can be identified. Each
has its own characteristics: one is well suited for CAI, another for composition. Given an application, how
then can we analyze its constituent transactions in terms of their requirements with respect to there criteria, and
how can we use these results as a guide in choosing the most effective way of implementing the user interface?
The answer is probably yes, but only using an approach. Furthermore, on moving into application
areas which are less familiar, the absence of a well structured model for interface design would precipitate far
less satisfactory results.

et al

ad hoc

The above example raises the second problem: one based on pragmatics. Even if we can derive a quantitative
measure of how well a particular interface works, we are still restricted in our ability to determine why it
works, and to be able to use that knowledge in designing future systems. Again the problem is one of
inadequate models, and one which will in an incremental way, be addressed by the iterative approach.

6. CONCLUSIONS

6/22/03 9:49 PMIteration

Page 13 of 16http://www.billbuxton.com/iteration.html

such testing, and render the approach economically and practically viable, three things were deemed
necessary: suitable prototyping tools, techniques of observation, and methods of evaluation. Based on our
own work, and that of others reported in the paper, we believe that the approach provides a valuable tool for
extending our understanding of the user interface, if for no other reason than it helps to focus our attention on
those areas in which there are critical gaps in our knowledge.

Atwood, M., Ramsey, R., Hooper, J. & Kullas, D. (1979).
. Alexandria, VA., U.S. Army Research Institute.

7. REFERENCES AND BIBLIOGRAPHY

Annotated Bibliograohv on Human Factors in
Software Development

Baecker, R.M. (1979). Human-Computer Interactive Systems: A State-of-the-Art Review. Presented at the
second International Conference on Processing of Visible Language, Niagara-on-the-Lake, Canada.

Baecker, R.M. (1980). Towards an Effective Characterization of graphical Interaction, in Guedj, R.A., ten
Hagen, P., Hopgood, F.R., Tucker, H. and Duce, D.A. (Eds.), Methodology of Interaction, Amsterdam:
North Holland Publishing, 127-148. .

Baecker, H., Buxton, W. & Reeves, W. (1979). Towards Facilitating Graphical Interaction Some Examples
from Computer-Aided Musical Composition.

, Ottawa,
Canada.

Proceedings of the 6th Man Computer Communications
Conference

Bambridge, L. (1979). Verbal Reports as Evidence of the Process Operator'sKnowledge. IiL~. ~. 1i~XL-
Machine Studies 11: 411-436.

Barnard, P., Hammond, N., Morton, J., Long, J. & Clark, I. (1981). Consistency and compatibility in
human-computer dialogue. 15(1): 87 - 134.International Journal of Man-Machine Studies

Buxton, W., Reeves, W., Patel, S., & O'Dell, T. (1979). Unpublished
manuscript, SSSP/CSRG, University of Toronto.

SSSP Programmer's Manual.

Card, S.K., English, W.K., & Burr, B.J. (1978). Evaluation of Mouse, Rate-Controlled Isometric Joystick,
Step Keys, and Text Keys for Text Selection on a CRT. 21(8): 601-613.Ergonomics

Card, S.K., Moran, T.P. & Newell A. (1980). The Keystroke-Level Model for User Performance Time with
Interactive Systems. 23(7): 396-410.Communications of the ACM

Crossey, S. (1977). . M.Sc. Thesis, University
of Toronto.

An Interactive Graphical Source Language Debugging Svstem

Deutsh, L. P. & Taft, E. A. (1980). Requirements for an Experimental Programming Environment. Xerox
PARC Technical Report CSL-80-10.

Dzida, W., Herds, S. & Itzfeldt, W. D. (1978). User-Perceived Quality of Interactive Systems.
 SE-4(4): 270-276.

IEEE
Transactions on Software Engineering.

6/22/03 9:49 PMIteration

Page 14 of 16http://www.billbuxton.com/iteration.html

[1] The work reported in this paper has been undertaken as part of the Structured Sound Synthesis Project of

Encarnacao, J. & Tozzi, C. (1979). . Darmstadt: Technische Hochschule,
Fachbereich Informatik.

Seilliac II Bibliographv Report 1

Green, M. (1980). Unpublished manuscript, DGP/CSRG, University of
Toronto.

The EDL Programming Language.

Guedj, R. & Tuckse, H. (Eds.). Methodologv in Computer Graphics. Amsterdam: North-Holland Publishing
Company.

Guedj, R.A., ten Hagen, P., Hopgood, F.R., Tucker, H. and Duce, D.A. (Eds.), (1980), Methodology of
Interaction, Amsterdam: North Holland Publishing.

Hogg, J. & Sniderman, R. (1979). Unpublished manuscript, SSSP/CSRG,
University of Toronto.

Input Tools Project Report.

Iverson, K. (1980). Notation as a Tool of Thought. . 23(8): 444-465.Communications of The ACM

Martin, J. (1973). . Englewood Cliffs: Prentice-Hall.Design of Man-Computer Dialogues

Moses, F. L. & Maisano, R. E. (1978). User Performance Under Several Automated Approaches to Changing
Displayed Maps. , 12(3): 228-233.Proceedings of ACM SIGRAPH

Ramsey, H. R., Atwood, M., & Kirshbaum, P. (1978).
. National Technical Information Service.

A Criticaly Annotated Bibliography of the Literature of
Human Factors in Computer Systems

Ramsey, H., R. (1979). Human Factors in Computer Systems: Review of the Literature and Literature and
Development of Design Aids. , National Technical Information Service.Technical Report SAI-79-113-DEN

Reeves, W.T. (1978). A Device-Independent, General-Purpose, Graphics System in a Minicomputer Tine-
Sharing Environment. , University of Toronto.Technical Report CSRG-93

Sheridan, T. & Ferrell, W. (1974). ,
 Cambridge: MIT Press.

Man-Machine Svstems: Information Control, and Decision Models of
Human Performance.

Shneiderman, B. (1980). .
Cambridge: Winthrop Publishers, Inc.

Software Psycholgy: Human Factors in Computer and Information Svstems

Ting, T.C. & Badre, A.N. (1976). A Dynamic Model of Man-Machine Interactions: Design and Application
with an Audiographic Learning Facilty. 8: 75-88.Int. J. Man-Machine Studies

Treu, S. (Ed.) (1976). . New York: ACM.User-Oriented Design of Interactive Graphics Systems

Footnotes

6/22/03 9:49 PMIteration

Page 15 of 16http://www.billbuxton.com/iteration.html

the University of Toronto. This research has been funded by the Social Sciences and Humanities Research
Council of Canada, whose support is gratefully acknowledged.

[2] There are a few notable exceptions, however, such as Card, Moran, and Newell (1980), which provide
predictive models which work well in restricted contexts.

[3] In this there is the implicit understanding that all files are of a specific type. This is not at all unreasonable
or difficult in most contexts, and can result in substantial benefits to both the user and programmer, the
motivation being much the same as for strong typing in programming languages.

[4] The cursor of a digitizing tablet, or a light pen are two possible pointing devices.

[5] One beneficial attribute of this mechanism is that in the context of an editor, it facilitates the ability to have
more than one "working" scores in primary memory at a time. This is in contrast to most text editors, for
example, which restrict the user to working on only one file at a time.
[6] Personal communication.

6/22/03 9:49 PMIteration

Page 16 of 16http://www.billbuxton.com/iteration.html

