COMPUTER SUPPORT FOR COOPERATIVE DESIGN

Susanne Bgdker
Jorgen Lindskov Knudsen
Morten Kyng
Computer Science Department,
Aarhus University, Ny Munkegade 116,
DK-8000 Aarhus C, Denmark.
Phone: +45 6 12 71 88.
E-mail: bodker@daimi.dk, jlk@daimi.dk,
mkyng@daimi.dk.

ABSTRACT

Computer support for design as cooperative
work is the subject of our discussion in the
context of our research program on Computer
Suppert in Cooperative Design and Communi-
cation. We outline our theoretical perspective
on design as cooperative work, and we exem-
plify our approach with reflections from a pro-
ject on computer support for envisionment in
design — the APLEX and its use. We see envi-
sionment facilities as support for both experi-
ments with and communication about the future
use situation. As a background we sketch the
historical roots of our program — the Scandina-
vian collective resource approach to design and
use of computer artifacts, and make some criti-
cal reflections on the rationality of computer
support for cooperative work.

INTRODUCTION

Design of computer applications and cooperative
work will be discussed in two different ways.
First we look at design as a process which may
create the conditions for cooperation in use.
Secondly, we look at the design process itself as
one kind of cooperative work. To do so we
identify and discuss the ideal that has become
dominant in understanding cooperative work in
and around the CSCW conferences: The small
research group of the-1980s. Rooted in the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

© 1988 ACM 0-89791-282-9/88/0377 $1.50 377

Pelle Ehn
Kim Halskov Madsen

Department of Information and Media Science,
Aarhus University, Niels Juelsgade 84,
DK-8200 Aarhus N, Denmark.
Phone: +45 6 13 67 11.
E-mail: ehn@daimi.dk, halskov@daimi.dk.

Scandinavian tradition of designing in projects
together with trade unions, we discuss some al-
ternatives to the ruling ideal. We emphasize that
it is important that designers of computer sup-
port for cooperative work do not just impose
their own understanding or ideal of cooperative
work onto other groups in other domains. In-
stead of heading for some ideal which may be
more suited for the cooperation of researchers
than for that of the users, we suggest that design
is understood as a process which can help iden-
tifying and emphasizing future cooperation
among the users.

Moreover, designers and users need tools
and techniques to facilitate design as a co-
operative process. We present our research
program [4], in particular a part of it concerning
computer support for cooperation among users
and professional designers. Since design of
computer support is design of the conditions for
the future work situations of the users, these
conditions need to be designed with concern for
the practice and cooperation of the involved
groups. We argue that an active participation of
users in design is necessary to deal with this.

To be able to utilize the practical knowledge
of the users and to be able to consider not only
describable aspects of the computer support and
future work situations, we advocate design by
doing: A process of envisionment where the
users can experience the future: Working with
the (simulated) application. We present a com-
puter-based object-oriented environment,

APLEX, which is intended to support such
cooperative design among users and profes-
sional designers. Finally we discuss some of
the technical challenges deriving from the design
of APLEX.

Hence, the paper start out with a broad intro-
duction to our social and anthropological per-
spective on cooperative work, then focus on the
design process as cooperative work, and finally
zooms in on our more technical efforts to design
computer support for this situation. In a con-
cluding example we discuss the relations be-
tween these different levels of understanding
computer support for cooperative work.

To set the stage, we will start out by making
some critical reflections of the rationality of
computer support for cooperative work.

RATIONALITY OF COOPERATIVE WORK

Briefly outlining the ruling ideal, we see a ten-
dency to define the ideal for cooperative work as
a small group of equally qualified people work-
ing together with very little managerial guidance
or intervention. In other words, the ideal for a
small research group in the 1980s.

One of the problems with the small research
group ideal is that it is an ahistorical ideal.
Conditions for scientific work have changed
dramatically in this century. Researchers have
been forced into large project teams where the
outcome is partly determined on beforehand,
and is to be achieved under great time pressure.
The cooperative ideal seems to have developed
in the same period of time as a way of preserv-
ing some of the freedom of the "real” scientist,
who was before a creative loner in his study.
The ideal of cooperative research work is
something new, and it may change again, de-
pending on the development of the conditions
for research.

Few researchers have explicitly defined co-
operative work, and those who do often base
their definition on sharing of tools, materials
and the like [14, 25, 26]. Is shared instruments
a precondition for cooperative work, and does it

378

make a difference if we talk about real-time
sharing or sharing of a tool-box? Can office
workers only work cooperatively if they also
share typewriter, paper and pens? It is claimed
that cooperation means no specialization or
division of labor. As an example of the oppo-
site, consider a woman giving birth to her child
aided by a midwife, a nurse, and possibly a
doctor. Specialization and division of labour is
obvious, and at the same time it is definitely an
example of cooperative work.

The definitions typically focus on cooperative
work in general as an ideal, decontextualized
from history, society and situation. The
emphasis is on use of artifacts and materials, on
communication and coordination of activities in
general. We share this ideal with great sympa-
thy. We think, however, that it is important to
go beyond this abstract level, trying to under-
stand computer support for cooperative work in
a historical and social context — to understand
cooperative work in practice.

By practice we refer to human everyday
practical activity. In practice we produce the
world. Both the world of objects and our
knowledge about this world. Practice is both
action and reflection. But practice is also a so-
cial and historical activity. As such it is being
produced cooperatively with others, being-in-
the-world. To share practice is also to share
understanding of the world with others. How-
ever, this production of the world and our
understanding of it takes place in an already ex-
isting world. It is the product of former prac-
tice. Hence, practice has to be understood so-
cially: as our producing and reproducing social
processes and structures as well as our being the
product of them.

Rationality

The practical "reality"” for cooperative work is
often far from as rational and democratic as
seems to be presumed in the "research group
ideal". To get to a somewhat different concep-
tion, we will give two examples of totally dif-
ferent ways of looking at cooperation: care ra-

tionality — the "motherly" way of cooperation;
and the rationality of solidarity — cooperation in
the workers' collective. We do not introduce
these examples to say that THEY are better
ways of looking at cooperation than the research

group ideal, but they definitely deal with.com-

munities where cooperation means something
different.

Care rationality

In her book, Caring. A Feminine Approach To
Ethics & Moral Education [20], Nel Noddings
discusses caring as a philosophical alternative to
the ruling ideal — "the father's voice" — the ra-
tional model, which is based on hierarchical
thinking and abstract categories such as fairness
and justice.

A person cares about somebody by taking on
this person's situation, based on her former
experiences with caring. Basically, we can only
care about somebody because we, ourselves,
have been exposed to the full-fledged experience
of being cared for at some point of time in our
lives. The caring relation is, in other words, not
a relation between equals, and we cannot just
decide to care about each other as an explicit or
implicit commitment.

The caring relation is a rather complicated
one. The "one-caring" starts to care and deter-
mines how to act, not from an abstract catego-
rization of different types of needs, but from
making specific to herself the situation of the
cared-for-to-be, and trying out that situation. In
other words the rationality of caring relates to
situations, whereas traditional, scientific, "male"
rationality relates to abstract categories.

The main points which challenge our under-
standing of cooperative work are, first of all,
that we deal with relations between people,
which are mutual but not on equal terms. The
degree of freedom to act, etc., is very different
on the two sides. Secondly, commitment to
participate in a caring relation from the one-car-
ing's side is not sufficient. To be able to take
on the role as the one-caring, the person must
herself have been cared-for. Thirdly, the ara-

379

tionality and situation dependence of the caring
relation, and the resolution of unresolved situa-
tions by prototypical investigations: the one-
caring investigates prototypical situations based
on the situation of the cared-for and tries out
these prototypical situations — "how would I like
it to be if my girl was in this situation...?"

Rationality of the workers” collective

The sociologist Sverre Lysgaard has analyzed
how factory workers together form a workers’
collective; a support and protection mechanism
against the ever ongoing exploitation by the
managerial technical/economical system [18].
To Lysgaard, the workers' collective is a result
of the tension between the individual on the one
hand and the technical and economical ex-
ploitation on the other hand.

In a factory we would normally not call work
cooperative. What Lysgaard describes is, how-
ever, a strong informal system which enable the
workers to act together, instead of as out-
standing and vulnerable individuals. The norms
and values of the workers' collective become a
buffer between the individual worker on the one
hand, and the technical/economical system on
the other. The conditions for this collective are
not what the small research group ideal says: a
multi-person tasks aided by technology, work
done in an informal, normally flat organization,
relatively autonomous. Rather it is determined
by a complicated, dialectic relation with an in-
exorable, formal, hierarchical organization.

Different rationalities and cooperative work

Where the discussions about cooperation based
on the small research group ideal have adapted
"the father's voice" means-end rationality, the
workers' collective represents a case of a dif-
ferent kind of rationality — the rationality of
solidarity. This is still bound to contracts or
commitments whereas the care rationality is an
example of a kind of rationality which is not as
directly bound to commitment — the commit-
ments can only be seen over time, as one person
carries on the caring-for to another person.

Our point is that we do not need to see re-
search work as an ideal for cooperative work to
conduct a discussion of computer support for
cooperative work. Rather we need to realize
that there are many other ways of conducting
cooperative work, and that these ways exists
under a wide range of conditions; political, eco-
nomical, gender-based, etc.

Cooperative work is many-folded and do-
main dependent. But still we believe in
cooperative work, and we want to support
situations of cooperative work. To build or in-
troduce computer support for cooperative work
is a process of change; not only of technology
bur also of the work place as such. Much in line
with the Scandinavian collective resource ap-
proach we suggest that in trying to understand
computer support for cooperative work we
should supplement the focus on the "product”
with a concern for the design process, including
also the specific work practice and setting.

THE COLLECTIVE RESOURCE APPROACH

The collective resource approach in Scandinavia
constitutes a major part of our background. It is
based on two design ideals: The first is in-
dustrial democracy, the attempt to extend po-
litical democracy by also democratizing the
work place — the social life of production inside
the factory gates and office walls. The second
is quality of work and product, the attempt to
design skill-enhancing tools and environments
for the production of highly useful quality
products and services.

Both design ideals are of importance in the
context of cooperative design. To have workers
and designers cooperatively design skill-en-
hancing environments for users is a very direct
way of having the workers influence their own
work situation. Hereby, cooperative design
contribute to industrial democracy.

Cooperation with the Trade Unions:

The Scandinavian Projects

Practice along the lines of the collective resource
approach has developed in Scandinavia during
more than 15 years [9, 10]. In research as well

- as in design, the approach includes the workers

380

who ultimately will be exposed to its results.
The process was initiated in 1970 by the Nor-
wegian Iron and Metal Workers Union (NJMF),
which in cooperation with researchers from the
Norwegian Computing Center embarked on a
research project on planning, control and
computerization from a trade union perspective.
It was decided, as part of the project, to try out
the work practices that the people in the project
believed would become commonplace in the fu-
ture: that the local unions themselves investigate
their important problems at the work place and
in the relation between the work place and the
local community, and that in this work they use
external consultants as well as internal consul-
tants and other resources provided by the com-
pany.

The NJMF project inspired several new re-
search projects throughout Scandinavia. In
Sweden the DEMOS project on trade unions, in-
dustrial democracy and computers started in
1975 [8]. A parallel project in Denmark was the
DUE project on democracy, education and com-
puter-based systems [17].

Although growing, the extent and impact of
these activities did not meet the initial expec-
tations. It seemed that one could only influence
the introduction of the technology, the training,
and the organization of work to a certain degree.
From a union perspective, important aspects like
the opportunity to further develop skill and in-
crease influence on work organization were
limited. Social constraints, especially concern-
ing power and resources, had been un-
derestimated, and in addition the existing tech-
nology constituted significant limits to the feasi-
bility of finding alternative local solutions which
were desirable from a trade union perspective.

As an attempt to broaden the scope of the
available technology, we decided to try to sup-

plement the existing elements of the collective
resource approach with union based efforts to
design new technology. The main idea of the
first projects, to support democratization of the
design process, was complemented by the idea

of designing tools and environments for skilled

work as well as for quality products and ser-
vices. To try out the ideas in practice, the
UTOPIA project was started in 1981 in co-
operation between the Nordic Graphic Workers'
Union and researchers in Sweden and Denmark
with experiences from the 'first generation' of
collective resource projects [2].

The position we took in NJMF, DEMOS, DUE,
UTOPIA and other collective resource projects
was that decentralization of decision-making and
a participative approach to the design process
are not sufficient. Instead our position goes
back to the different interests of management
and workers concerning industrial democracy.

Conflicts and emancipation

Hence, we rejected the harmony view of
organizations, according to which conflicts in an
organization are regarded as pseudo-conflicts to
be dissolved by good analysis and increased
communication. Consequently we also rejected
an understanding of design as fundamentally a
rational decision-making process based on
common goals. Instead our research was based
on a conflict view of industrial organizations in
our society. Within a conflict view it does make
a difference whether you design cooperatively
with management or with workers. In the
interest of emancipation, we deliberately made
the choice of working together with workers
and their organizations, supporting the devel-
opment of their resources for a change towards
democracy at work. We found it necessary to
identify ourselves with the "we-feeling" of the
workers' collective, rather than with the overall
"we-feeling" of modern management which fo-
cuses on gaining more productivity out of the
work force. In short: Trade unions were seen
as organizations with a structure that was
problematic when functioning as vehicles for

381

designing for democracy at work, at the same
time they were seen as the only social force that
in practice could be a carrier of this ideal.

Human Centered Design

The political reason for involving end-users in
the design process, and for emphasizing their
qualifications and participation as resources for
democratic control and change is only one side
of the coin. The other is the role of skill and
participation in design as a creative and commu-
nicative process.

This complementary concern has grown out
of our dissatisfaction with traditional theories
and methods for systems design — not only with
how systems design has been politically applied
to deskill workers, but more fundamentally with
the theoretical reduction of skills to what can be
formally described. Hence, one can say that the
critique of the political rationality of the design
process points to a critique of the scientific ra-
tionality of methods for systems description.

Our approach to cooperative design include
users in a double sense. We claim the impor-
tance of rethinking the design process to include
structures through which ordinary people at
their work place more democratically can pro-
mote their own interests. We also claim the im-
portance of rethinking the use of descriptions in
design, and of developing new design methods
that enable users of new or changed computer
artifacts to anticipate their future use situation,
and to express all their practical competence in
designing their future.

This approach is a challenge to rethink tradi-
tional understanding of the process of design
and its relation to the use of computers in
working life. However, it is not only a strategy
to include users and their trade union activities
in the design process, but more fundamentally
to include a cultural and anthropological under-
standing of human design and use of artifacts,
to rethink the dominating objectivistic and ra-
tionalistic conception of design. At least in this
sense, the collective resource approach reaches
beyond the borders of Scandinavia.

THE OBJECT-ORIENTED PERSPECTIVE

The collective resource approach is one part of
our background. The other major part - the ob-
ject-oriented perspective on programming - can
be traced back to the Norwegian Computing
Center as well. Simula67 was initially devel-
oped as a simulation language, but its object-
oriented approach was found useful as a general
programming perspective. Since then there
have been major research efforts in Scandinavia
within various aspects of object-oriented
programming, including also the idea of lan-
guages rooted in the professions of the (non-
computer professional) users. It is outside the
scope of this paper to discuss our view on ob-
ject-oriented programming further, but we will
point out that our way of thinking about pro-
grams and programming is strongly influenced
by this tradition. Further discussion can be
found in [15].

UNDERSTANDING DESIGN AND USE OF
COMPUTERS ARTIFACTS

Given this background we will now turn to our
philosophical understanding of design. We fo-
cus on understanding of the role of computer
applications in use, on the phenomenology of
design, and on design as language-games,
rather than on design as consciously planned
and executed processes.

An understanding of the role of a computer
application in use is important for design. Our
inspiration for a new approach to design, based
on an understanding of the use of artifacts in
human work activity, comes from many fields
of research. They include the human activity
theory of A. N. Leontjew [3], the language-
game approach by L. Wittgenstein [10], and
recent contributions to the theory of design and
computer artifacts by H. and S. Dreyfus [7]
and T. Winograd and F. Flores [29].

With these approaches, we take as our point
of departure what people do with computers in
their daily work, how they cooperate with each
other by means of computers, and how this co-

382

operation can be enhanced. The basis for de-
sign is involved, practical use and un-
derstanding, rather than detached reflection.
"Hands-on" experiences come into focus. We
comprehend design of computer artifacts as
concerned social and historical activity in which
these artifacts and their use are anticipated. An
activity and form of knowledge that is both
planned and creative, and that deals with the
contradiction between tradition and change.

Design and practical experience

The future use situation is the origin of design,
and we design with this situation in mind. To
design with the future use activity in mind also
means to start out from the present practice of
the future users. It is through their experiences
that the need for design has arisen, and it is their
practice that is to be applied and changed in the
future use activity.

Some aspects of practice can be made ex-
plicit. In design, they can be formally repre-
sented in systems descriptions and requirement
specifications. But there are other aspects of
practice which we can learn only through
practical experience. We call these aspects
practical. The practical aspects are important in
design exactly because they are what character-
ize professional and skillful use of an artifact, as
opposed to the use by a novice who basically
follows explicit rules.

Design and phenomenology

As mentioned above, our approach is inspired
by the one taken by Winograd [29] and Dreyfus
[7]. With their phenomenological framework,
the point of departure in design is that the
different participants understand the situation
they come from. They are used to act in situa-
tions of "normal resolution”. This goes for
users as well as designers. The normal resolu-
tion or understanding includes the blindness
created by the tradition they come from. The
design process is characterized by a breakdown
of this understanding, by which a situation of
irresolution is created. Design is resolving these

situations of irresolution, based on com-
mitments between the participants. This is nei-
ther objective problem solving nor rationalistic
decision making. It is concerned human acti-
vity, where different traditions and backgrounds
meet.

The concept of breakdown is fundamental to
design. Breakdown is both desirable and unde-
sirable. On the one hand it is necessary to break
down the everyday understanding and use
within a specific tradition to create new know-
ledge and new designs. Breakdown of our un-
derstanding of a well known situation is the
opening to new knowledge and eventually an
understanding of something new. On the other
hand, design which is not based on the under-
standing and use within a tradition — the users'
practical skills — are likely to fail, because
knowledge "embedded" in the tradition is lost.
To be able to deal with this contradiction be-
tween involved understanding of the artifact in
use and detached reflection on the artifact and
the use situation is fundamental to design.

Design as a language-game

Our way of understanding prototyping, mock-
ups, and experimental methods in design is also
heavily influenced by the ordinary language
philosophy of Wittgenstein. Following Witt-
genstein, we think of design and use activities
as language-games that people play: we learn to
participate, interact and communicate in games.
We use our ordinary language, and we acquire
competence by learning in practice. This means
that we view language as action rather than lan-
guage as description as fundamental.

Designers are involved in changing computer
artifacts and the way people use them. Hence,
the language-game of design is one that changes
the rules for another language-game — that of
use of the artifacts.

Playing the game of design

If designers and users share the same form of
life it will be possible to overcome the gap be-
tween the different language-games. It will at

383

least in principle be possible to develop the
practice of design so that there is enough family
resemblance between a specific language-game
of design and the language-games in which the
design of the computer artifact is intervening.

The language-games played in design can be
viewed both from the point-of-view of the users
and of the designers. We can focus on design
as a language-game in which the users learn
about possibilities and constraints of including
new computer artifacts in their ordinary lan-
guage-games. The designers’ practical knowl-
edge will primarily be expressed as the ability to
construct specific language-games of design in
such a way that the users can develop their re-
flective and practical knowledge of future use by
participating in design processes. However, in
order to set up these kinds of language-games
the designers have to learn from the users. To
possess the competence involved in using a
professional language requires a lot of learning
within that practice.

The users can, in an involved and influential
way, participate in the language-game of design,
when the methods applied give their design ac-
tivities a family resemblance to the language-
games they play in ordinary use situations. In
order to stress this important involvement of the
users in the design process, we often refer to the
users participating in a design process as lay
designers. They have expertise within the work
domain, but no particular expertise as designers.

According to Wittgenstein [30], language-
games are also characterized by how we play
and make up the rules as we go along. And
there are even games where we alter them as we
go along. This is in our view a good
characterization of the language-games of de-
sign.

Descriptions and models in design

In understanding design as language-games,
systems descriptions are seen as speech acts we
have learned within a specific language-game.
If they are good, it is because they are good
"moves" within that game. As such they can

create breakdowns of understanding as well as
help avoid them, depending on what kind of
moves they are within the game.

To use descriptions in design is to participate
in the playing of a language-game. This is the
language-game of anticipating new or changed
computer artifacts and use situations. What is
created are artifacts that we can reflect upon, and
some times get "hands-on" involved practical
experience from (e.g. by using a prototype).
Especially artifacts for involved experience as a
basis for later reflections are fundamental to our
approach.

New design methods?
In summary, it is our position that
+ a new design approach must take the specific
use activity as its point of departure;
+ focus on language as action rather than as
description; and that
+ users must be allowed to examine the artifact
being designed through hands-on experi-
ences.
What is needed most urgently at the moment is
not better linguistic notations for more or less
formal descriptions of the functionality of a
system, but descriptions that are reminders of
use of the intended computer artifact. This
points in the direction of description methods as
support for concerned involvement, rather than
correct description. Such support may be
achieved by the use of scenarios, prototypes,
mock-ups etc. This is design as a language-
game of doing, learning and playing.

However, few traditional computer-based
design tools are flexible enough to support this
kind of design. Traditional prototyping meth-
ods exhibit a potential conflict between accessi-
bility (not too much computing competence and
programming effort should be needed to use
them), and flexibility, both in terms of how the
tools can be applied, and in terms of which
products can be designed.

With this background and theoretical perspective
we now turn to our current research program on

384

computer support in cooperative design and
communication.

THE RESEARCH PROGRAM:
COMPUTER SUPPORT IN COOPERATIVE
DESIGN AND COMMUNICATION

The research program started in May 1987. Itis
a long term effort planned jointly by the Com- -
puter Science Department and the Department of
Information and Media Science at Aarhus Uni-
versity [4]. One aspect of the program focus on
computer support for experimental design and
for communication. The other aspect of the
program focuses on the language usage of de-
sign and use of computer systems, and the way
it relates to the work processes of which it is a
part. The purposes are:

* to develop exploratory and object-oriented
programming methods into something
which, in combination with other design
methods, can be applied in practical design;

* to do research into the possibilities of making
better user interface design, by means of dif-
ferent theoretical frameworks, and better
computer support (such as pluggable soft-
ware);

* to investigate the possibilities of creating bet-
ter computer support for cooperative work in
small groups.

* to provide empirical knowledge of the in-
terplay between the computer medium and
the professional communication that takes
place through it, or is motivated by it, and

* to investigate the possibilities for exploiting
this knowledge as a basis for design.

As a summary we characterize the theoretical
perspective of the program with the following
stipulations and reflections:

* In designing a computer application, conditi-
ons for the whole use situation are implicitly
or explicitly designed as well.

In design of computer support for coopera-
tive work we have to be able to understand
the cooperative work the application is to be

used for. This can only be done in coopera-
tion with experienced users acting as lay
designers.

Users and designers often have different
backgrounds, different professional lan-
guages, and are used to different language-
games.

The construction of language-games unique
to the specific design situation, but with
family resemblance with the lay designers
normal professional language-games, is an
Important aspect of cooperative design. In
this way, cooperative design becomes a pro-
cess of mutua learning.

Normally, a computer application is used in a
multi-lingual environment, comprising the
technical support staff and (possibly several)
user professions.

All parties can make legitimate, but some-
times contradictory, demands to the computer
application. To design the computer ap-
plication in such a way tha it takes the multi-
linguigtic environment into account is a cha-
lenge in cooperative design.

The needs and demands of the prospective
users are essential to good design, but are
hard to express before the future situation has
been experienced.

In design of computer support for coopera-
tive work this obstacle can be surmounted by
using prototypes, mock-ups, scenarios, etc.
which make it possible to get experiences,
not only by reflection, but aso by involve-
ment in possible future use situations and
through use of possible future computer ap-
plications.

Professional users tend to be rather tradi-
tional in their views on how to organize their
work and on the potential computer applica-
tions for it.

Methods in desgn have to relate to both tra-
dition and change, and especialy to the
interplay between the two positions. Com-
puter applications are often understood
metaphoricaly, and metagphors can be used in

385

design to support the interplay between
tradition and change.

We now turn to our own considerations in a
project on a computer-based artifact for early
envisionment in cooperation between pro-

fessional designers and lay designers. First we

discuss some dimensions of the design situa-

tion, we then turn to APLEX, a computer-based
environment for cooperative design.

DIMENSIONS OF THE DESIGN SITUATION

As outlined above, we consider the role of the
lay designers as a key issue. End-user in-
volvement is needed but to be fruitful, the de-
sign situation must have family-resemblance
with their work situation and allow them to get
“hands on” experiences in dStuaions resembling
the (future) work. We cal what is demonstrated
or examined in the desgn dtudaion a prototype.
In doing this we are hopefully not to much in
conflict with emerging terminology in the area

In understanding the design situation we must
congder the people involved. Are the designers
professionals, lay designers, or a combination?
Today, the only active designers are pro-
fessionals. End-users are at best only com-
petent evaluators. Many 4th generation tools
advocate that lay designers can design their fu-
ture computer applications themselves, but this
is rarely seen in real projects. Most often we
have seen the professonad designers as the ones
suggesting changes. The users accept or reject,
but do not take the initiative to make changes.
Furthermore, situations where only lay design-
ers with one type of use background participate
differ from situations where more user groups
are active. The computer professionalsin those
situations often take on the responsibility of
transferring opinions and choices from one
group to the other.

We must also consider different aspects of the
design process.

One aspect is that of demonstration versus
use. In demonstration the lay desgner watches
the professional operating the prototype. By
use we mean that the lay designer try out the
prototype in the (simulated) work activity. In
case of modification the prototype is changed
during a session, whereas in the case of explo-
ration the prototype is examined without
change. Mogt practicd gtuations ded only with
exploring. This relates to demonstration: a
demonstration, which is driven by the profes-
gond desgners, often resembles a film or video
with no possibility of stopping or going behind
the screen.

There is dso a difference between laboratory
and field (or on location) evaluation: the diffe-
rence between evauation of prototypes in an a-
tificial setting and their actual use in the work
activity. When we talk about the early stages of
the process where envisionment is the main
purpose, thisis mostly done as laboratory eval-
uation, or in fact often without considerations
for an explicit use setting. Prototyping by ver-
sioning can be seen asfield evaluation, but at a
very late stage of the design process. Con-
trolled experiment where the aspects to be tried
out are settled in advance differs from ex-
ploratory experiment. Outside the human fac-
tors research, there seems to be little practical or
theoreticd understanding of the needs or meth-
ods for setting up controlled experiments. At
the same time, many of the human factors
methods are too limited when it comes to the
rather complex dituations of human work.
Furthermore, many approaches remain analyti-
ca and do not support design based on the
evaluation.

Envisionment may have the character of brain
storm, outline of alternatives or test of a single
solution followed by minor changes. Presently,
computer support for brain storming is seldom
applied in practice. Often only one basic archi-
tecture is prototyped, and then a few different
screen layouts, report formats etc. are tested.

Each of these dimensions related to the pro-
cess are of relevance when creating a coopera-

386

tive design situation which stimulate active lay
designers involvement. For instance, compae a
situation where the professional designer in a
|aboratory demonstrates a prototype with a Stu-
aion where the lay designer on location tries out
various alternatives as part of a brain storming
process.

We now turn to some more technical aspects of
computer support for design in generd.

Depending on the degree of integration with
the computer resources in the organization, an
evauaion in red work Stuations is made esser
or harder. Furthermore, if there is a large de-
gree of integration, all the designers, including
lay designers, have a possibility of knowing the
computers on beforehand.

Access to other design tools and ways of
combining various desgn tools determines the
extent to which envisonment have to be done
with only one tool or whether it is possible to
apply several supplementary tools simultane-
oudly.

Is it possible to reuse and modify modules
from exiging applications or prototypes? Access
to acomponent library helpsthe designersto
rpidy and easlly get from one prototype to an-
other. For instance, is it possible to reuse an
existing database and build or experiment with
different interfaces? To what extent is it possble
to experiment with new types of hardware?

The degree of incrementability says some-
thing about how easily prototypes can be
changed: How is it possible to intervene into a
prototype in the design session and make the
next verson running?

Finally, but not of least importance, we draw
to the attention the conditions under which the
design takes place. The resources available in
terms of time for the designers, equipment
available and qualifications of the designers are
essential. Moreover, the authority of the
designers to make decisions about the design
process and product is important too.

Based on our theoretical perspective we can
conclude that:

. These users should be able to explore and to
modify in the fidd.

. The construction of prototypes should be so
effective, and the prototypes so flexible, that
different prototypes in fact will be con-
structed and thus different alternatives tried
out.

. The prototypes developed should be based
on a suitable spectrum of different computer
support. They should be integrated with
other systemsin the work situation in such a
way that the future work situation may be
experienced.

. The organizational setting and the resource
situation of the designers should allow them
to spend the time needed to develop design
skills directed towards the specific area of
use, and to make decisons based thereon.

This is the design setting for which we need
computer support. Unfortunately existing com-
puter support gives rise to systems that are
rather closed, with very little support for multi-
user applications, for multiple activities, for
reuse of exising applicaions, or for integration
with existing applications or newly created ap-
plications. Hence, the challenge to design the
APLEX.

COMPUTER SUPPORT FOR ENVISIONMENT —
APLEX

The design environment APLEX is a means for
cooperative design. It isintended to support in-
volved communication among professional and
lay designers about future use situations. This
communication is based on practical hands-on
and organizationd experience using APLEX. We
see the future design situation using APLEX as
being a cooperative design situation between
one or more professional designers and one or
more lay designers. The different designersare
directly involved in the design process and
APLEX mugt be able to respond to the needs of

387

the whole group. This implies that it should be
possible for both the professona and for the lay
designersto conduct their own experiments us-
ing APLEX. Furthermore, it should be possible
to engage the designers in intensve design work
where the different designers are conducting a
mutual experiment usng APLEX.

This implies that APLEX must be able to sup-
port envisionment ranging from mock-ups over
prototyping to gpplication congtruction/integra-
tion, using various techniques such as “intelli-
gent” dide shows, guided tours, and ex-
ploratory programming.

On the design of APLEX

APLEX will not primaily am a implementing
the computer application which is being con-
structed. Instead we will experiment with
development systems where the prototypes do
not need to be running versions of the future
computer program, as well as with systems for
actual application development. It is one of the
aims of this project to develop a designer’'s
workbench, where both possibilities exist as
supplementary tools for the designers. The
flexibility of APLEX should dlow for evauation
of various types of user interfaces, various in-
teraction dyles, different functiondities as well
as various target applications. APLEX should
include generalizations of the facilities that 4th
generation tools provide. Furthermore, we will
examine the use of various kinds of simulation
and visuaization techniques. APLEX should
dso incdude posshiliies of gSmulating different,
specific computer workstations and other types
of technology.

Technicdly, APLEX presents severa research
challenges. Firdt, it must offer a comprehensive
and device independent interface framework,
Secondly, it tries to expand the capabilities of
prototype systems outside the limits of tradi-
tiond implementability (pats of the functiondity
and the interface might be ssmulated by means
of video-disks, “dummy” screen images, or
human beings). Thirdly, it explores the capa-
bilites of grongly interdependent interfaces on

different workstations connected through high-
capacity networks. Fourthly, it explores the re-
lationship between the application and the un-
derlying interface framework through invedtiga
tion of the technical implications of this concept.
To achieve these goa we find that full support
of the I3 concept (Incremental, Integrated, In-
teractive) is necessary. Furthermore, the design
of APLEX will be based on many aspects of tra-
ditiond workgation environments.

Cooperative

From the point-of-view of cooperation, the is-
sue of robustness versus flexibility is important.
Often it is the professional designers who need
the flexibility wheress it is the lay designers tha
need the robustness in order to have any redism
in their examinations.

In case of demonstration or usein restricted
situations where the designers actually sit to-
gether and examine the prototype, the “side-
tracking” may be avoided by the interference of
the professional designer, but in situations
where the lay designers are “on their own” this
is not the case. Such errors may create break-
downs which cannot be interpreted in the use
situation. Hence, they cannot contribute to the
development of the lay desgner’s understanding
of, or unreflected action in this use Stuation.

Furthermore, cooperation entalls that creation
of multi-user applications is an important aspect
of APLEX, and that even in the design situation
multi-person use of APLEX is needed. The
multi-user gtuations create a need to let APLEX
include network faciliies as wel as facilities for
sharing of objects.

Multi-person use results furthermore in re-
guirements to documentation and commu-
nication support in the design situations. A
shared hypermediais one exiting ideawhich is,
as yet, unexplored. Hypertext technology [6]
seems to be an obviousideafor away of struc-
turing this documentation, because it alows
reference pointers among different parts of the
text, and even of the prototype. This possibility
is primarily intended for reflection in breakdown

388

situations where the “illusion” of being in the
future world breaks down for the users.

Incremental

We have described the need for rapid modifica
tion of the substrate being created. One impor-
tant means for achieving the capability for rapid
modification is obtained by a high degree of
incrementability. Several systems contain such
high degree of incrementability, most notable
the various Lisp-systems{24] and the Smalltalk-
80 system [11]. However, these systems have
shown that we face an ‘overal dilemma - the
contradiction between flexibility and robustness.
Incrementability is obtained by having very
flexible programming languages that allow for
dynamic binding. At the same time, such dy-
namic substrates pose serious problems in terms
of security. This implies that errors occurring
during use are usually indicated at a very low
level in the system, which make it very difficult
for a lay designer to interpret the actua cause of
the error. It should be possible to construct
substrates that are consistent, and where errors
messages etc. can be interpreted within the sub-
strate.

We also need a powerful debugger (in the
line of the Smaltalk- debugger) making it
possible to cancel erroneous computations, ig-
nore errors, make minor local modificationsin
order to make progress possible, or follow a
chan of activities leading to the erroneous dHate.
The debugger must be able to grant specific ca-
pabilities temporarily to an object in order to d-
low for further examination. We find, how-
ever, that this ability must be very explicit in or-
der to ensure that the designer is aware of the
change of capabilities of the object. Thus,
APLEX should support the manipulation of
capabilities of the individud objects.

The above discussion of robustness |leads to
our view of incrementability. APLEX should be
incremental in the sense that it should be poss-
ble to modify objectsin a substrate without re-
gructuring the whole substrate.

Integrated

By integrated is meant that APLEX iswell-inte-
grated with the various other applicationsin the
organization, and that substrates created with
APLEX themsdves can be integrated with other
substrates. The guiding metaphors of integra-
tion in APLEX will be “access to anything any-
time” and “living within the full environment”.
The metaphor of total access is of course reldive
to the present capabilities in the system as dis-
cussed above. Furthermore, ApLEx must keep
track of the relations between the objects, and
thelr corresponding source, documentation, help
facilities, tutorids, as well as their relations with
other objects in the environment.

Having a design tool isolated from the other
computer faciliies in the organization will give
rise to numerous problems. It is therefore im-
portant that facilities for connecting APLEX to
the exigting computer resources ae designed to
overcome those problems.

The subgtrates in APLEX will be organized in
easy-to-access libraries (or databases) and
structured with re-usability and pluggability as
some of the most important design strategies.
We will extend this view to hardware, such that
hardware components in APLEX will be consd-
eed sSmilar to software components (pluggable
hardware compoenents). Thus allowing for
experimentation with alternative hardware de-
vices in the design process and for experiments
with advanced hardware, e.g. video.

Besides being well-integrated with itself,
APLEX must be well-integrated with other de-
sign tools. It should e.g. be possible to use a
sequence of screen images made in Hyper-
Card™ [13] or VideoWorks™ [28].

Interactive

Without the need for any arguments, APLEX
must contain extengve graphicad capabilities for
cregting highly interactive interfaces both to ex-
isting computer facilities, and to APLEX appli-
caions. Snce we are enisoning APLEX beng
used for experimenting with the development of
applications to be realized on specific com-

389

puters, we intend, within APLEX, to creste sm-
ulations of various existing interactive systems,
such as the Macintosh desktop [123, the
Smalltalk- and the Microsoft window sys
tems. This will make it possible, in the design
situation, to experiment with the impact of im-
posing computer-specific constraints on the fu-
ture application.

Further Dedgn Issues

The above design space gives rise to further im-
portant issues, that will be addressed during the
design of APLEX., These include

Domain dependence: APLEX must support
application domain specific substrates. This
makes it possible to make APLEX “grow” into
gpoplication domains dowly, and thereby make it
possble to create more and more advanced sub-
strates within a specific application domain by
creating more and more domain specific sub-
strates.

Enforcement versus conventions: Our man
points of reference in the above discussions
were Smalltalk- on the one hand, and Hy-
perCard on the other. Very aike in some as-
pects, very different in others. A comparison of
the two easily leads to a discussion of what
support for programming the prototype design-
ers need - do they need a specific number of
different types of objects, or is a flexible
posshility for usng and modifying examples of
objects better? In general thisisadiscussion of
to what extent a certain style of use of APLEX
should be enforced by strict typing and syntax,
and to wha extent a more flexible guiding of the
user by examples, convention patterns, etc.,
works better. At the moment we do not know,
experiences from programming languages are
ambiguous in this respect, and we hope to be
ale to try out different ways of doing this.

Architectural Overview of APLEX

Throughout the development of APLEX we will
experiment with object-oriented design. One of
the motivations for this is that object-oriented
design principlesfacilitate creation of what can

be called pluggable software. That is, software
that is open-ended in the sense that a given
substrate, created by means of object-oriented
design principles, is a substrate that in a future
application can be expanded and modified. We
will hopefully benefit from this open-ended na-
ture in two ways: Firgt, it will be a well-suited
structure for the implementation of the above
mentioned components of APLEX, since they
both interndly and externdly are substrates that
will be subject to expanson/modification during
the design process. Secondly, the strategy for
combining substrates will benefit from the use
of object-oriented design principles [31]. As
such, this part of the project will also be an ex-
periment in realistic application of object-ori-
ented design principles. This leads to the need
for a programming language supporting object-
oriented design principles. The language cho-
sen is the Beta programming language [16].

The architecture of the graphical interaction
system of ApLEx contains the following three
components:

Graphical library which is primarily concer-
ned with supporting the construction of graphi-
cal items. The graphical library is a toolbox
with capabilities like drawing (and manipulat-
ing) of such items. Presently, APLEX will be
designed using the page composition language
PostScript as its graphica library [22].

Windowing environment which is primarily
concerned with supporting the sharing of the
display by various applications running on a
workstation, as well as sharing of windows
between workstations via a local area network.
Within each window, graphical capabilities may
be supported, or each application is responsble
for utilizing the inside of each window.
Presently, APLEX will be designed utilizing the
NeWS™ [19] window system.

User interface framework. The design of
APLEX is aresearch effort in the direction of
creating a framework by which the interaction
between the user and the computer application
can be envisioned. The capabilities of such a
framework are extensions of the capabilities of

390

the windowing environment. In addition to the
capabilities of the windowing environment, the
framework contain capabilities for defining
more fine-g-rained structures on the display by
defining graphical structures that are not win-
dows, but more tightly connected with the ap-
plication. Examples of such structures are
icons, buttons, menus, and scroll bars. Fur-
thermore, the framework is concerned with the
definition, distribution and handling of events,
both hardware events (e.g. mouse movement,
keyboard events, etc.) and software events (e.g.
window exposed, icon selected, spreadsheet -
cell selected). Our view on user interface
framework is inspired by the MV C concept in
Smallta.lk-80 [11]. The semantics of interactive
graphical communication are discussed further
in [5].

It is important to Siress that our view on user
interface frameworks is not pat of a discussion
in favor of separating the design of the interface
from the desgn of the functiondity of the appli-
cation. In fact, we find that such separation is
neither possible nor feasible in genera [27].
However, it is our aim to create a set-up of
pluggable components, some of which dea with
the interaction and some with the underlying
components, e.g. databases.

Some applications may be constructed with
more than one interface associated with it.
There are severa architectural reasonsfor this:
Each interface may, for instance, focus on spe-
cific aspects of the application, and the structure
of each interface is desgned in order to ease the
manipulation of these specific aspects. These
interfaces might all be active at the same time,
and manipulations of the application through
one of the interfaces might influence the other
interfaces. Each interface defines a protocol that
the application must support, and the interfaces
must be dynamically connected to the underly-
ing components. Furthermore, interfaces may
utilize various predefined interface components,
such as buttons, scroll bars, or menus. Such a
framework will dlow for rapid modifications of
a prototype, as well as for design of different

alternative prototypes, some of which show
different styles of interaction based on the same
underlying components.

The above structure is what we, with respect
to user interfaces, mean by pluggable compo-
nents. The protocols define the slots by which -
interfaces and underlying components can be
plugged together. In the design of APLEX, we
will examine the usage of object-oriented design
principles in this area.

The underlying extensibility in object-ori-
ented systems seems to be well suited to plug-
gability. The design of APLEX will utilize this
pluggability as the fundamental architecture of
the system. This implies that all components of
APLEX will be constructed as objects, including
hardware components. In this way, we will be
able to simulate not yet constructed specialized
hardware by constructing a software simulation
(software object) of that component and conduct
experiments. Furthermore, we will be able to
experiment with different hardware solutions to
specific interaction problems by defining com-
mon properties of types of hardware (e.g.
pointing devices or picking devices) and then
select different actual devices (e.g. soft screen
vs. mouse vs. tracker ball). In the same way,
it is possible to encapsulate the functional beha-
vior of external (to APLEX) software systems as
objects in APLEX with a protocol, modeling the
functionality. Furthermore, we will be able to
treat external resources on equal terms with
APLEX resources and experiment with using
different external resources as alternatives in a
design process.

Using APLEX

We would like to conclude our treatment of
APLEX with a “Please try it!”. At the moment,
however, APLEX exists only as envisionment.
We are now conducting experiments, based on
HyperCard, Smalltalk-80, NeWS and other
systems in order to try out and look further into
the ideas outlined above. We have also initiated
the construction of the first prototype of APLEX,

391

while still continuing to develop the conceptual
framework underlying APLEX.

As a weak substitute for "hands-on" experi-
ence we make use of a fictious example. The
example is, however, firmly rooted in our em-
pirical research [3].

Imagine a project where a group of profes-
sional designers work together with a group of
office workers in a government institution to
help these office workers achieve new kinds of
computer support for their work. The project is
managed by a steering committee with repre-
sentation from management and the employees.
It is a basic idea of the project that the employ-
ees should, in project groups, take part in de-
signing the computer applications that they are
to use themselves. The specific case deals with
the filing and retrieval system for incoming and
outgoing mail etc., the so-called Journal. The
purpose of this project is to find out how the
Journal can be reorganized to be more efficient,
eventually by means of a computer application.

From the beginning, the group work with
three different alternatives:

« a restructuring of the existing paper based
Journal without the use of computers.

+ a restructuring of the paper files with com-
puter support for retrieval of documents and
computer-based mail lists to inform the
workers who draw on the services of the
journal in their daily work (case workers)
about incoming mail.

» a computer based Journal where all docu-
ments are scanned in upon arrival in the
Journal office, and with computer based re-
trieval and mail lists.

In the early meetings it is a major task to delimit
the type of computer application wanted from
the three general solutions. Some of the impor-
tant issues are the organization of work — who
should use the application and how?, what are
the hardware choices?, and how are they con-
nected to the physical organization of work?
Depending on whether the documents are to be
filed in a traditional paper file or scanned into
the computer, the women in the Journal office

have to conduct their work differently — the role
of e.g. a photo copier would differ. Much of
the internal mail circulation would not be needed
with the scanner solution, i.e. the traditional
communication patterns would be changed fun-
damentally.

In this situation, the professional designer
initiate the discussions by building two small
demonstration prototypes by means of APLEX:
scanner or no scanner. Together with simple
mock-up's supplementing the physical layout of
the future work-place, the prototypes are used to
demonstrate to the group what the possibilitics
and constraints of the alternatives would be.
Maybe APLEX doesn't really contain a pluggable
scanner, in which case the designer uses images
on a videodisk, made with a drawing program,
Just stmuiating the scanning procedure. The
main idea is to get a discussion about technical
and organizational implications of the twe dif-
tferent proposals.

In this situation, APLEX is a flexible envi-
ronment for the professicnal designers: it allows
them to reuse parts {rom one prototype in con-
structing the other; to make use of other design
tools in building the prototypes, and to use
pluggable hardware devices.,

Next we consider a situstion where a profes-
sional designer and a group of lay desigaers,
woren from the Journal office, sit down to find
out exactly what informaton should be filed,
how it should be entered, what the screen im-
ages should look like, and what interaction they
want. Based on earlier talks with the users and
on the previous meetings, the professional de-
signer has made a first prototype. This proto-
type is merely a sequence of screen images,
which are based on the appearance of the mail
lists presently used at the institution, When
necessary, information is added to the proto-
type. The discussion focuses on the informa-
tion needed — on the screen and in the files, and
how much of this should be entered by the of-
fice workers — and on the possible changes in
ways of cooperating. This is a situation where
the designers are modifying the prototype, si-

392

multaneously with the use of it. The component
library is used to look at different types of
screen layouts and interaction styles: a direct
manipulation version, a form-filling one, etc.

At a later state, the prototype, which have

. been elaborated on by the involved group, can

be used in its rea! organizational sesting. The
prototype is still running by means of APLEX,
but now APLEX needs also to be hooked up to,
or running some of the other computer pro-
grams that are normally used in the Journal of-
fice, e.g. a word processing program. For a
period of time, the Journal office tries out their
design in their daily work. Some changes are
made in the way the system is used. Problems
still come up about the information needed to
file and retrieve the documents, but also about
the speed of the application. The situation is
one where the robustness of the prototype is
important since the professional designers, al-
though present, cannot help each user all the
time. ‘

SUMMING UP

We have scen examples of the use of APLEX in
different situations in a design process, This
process is one in which the participants could
make use of their ditferent backgrounds as of-
fice workers or as designers in playing the Lan-
guage-game of design. The APLEX prototypes
have made it possible, under different condi-
tions, for the office workers to experience their
future work situation. The APLEX is an cavi-
ronment that facilitates such language-games.
We do not see APLEX as the only way of doing
this. Rather, APLEX ought to be one of many
more or less integrated tools and techaiques be-
longing to the practice of the professional de-
signer.

The design process is very important for the
future work situation of the users. The kind of
computer support needed for cooperative work
in different settings may differ a lot, and as we
have argued, it is important to investigate and
develop new possibilities of cooperation in a

design process where prospective users are ac-
tively involved. In other words, we do not pri-
marily see cooperative work, or computer sup-
port for it, as a static entity. We view design as
a cooperative process out of which new pos-
sibilities of cooperation is created.

In the presentation of our example we have
made a number of gross simplifications, espe-
cially with respect to the degree of harmony in
the project: first of all, management doesn't
interfere with the process. Secondly, there is
only one user group. From the real life case we
have reduced complexity by not considering the
group of case workers. Thirdly, we assume
that the professional designers have no interests
of their own, which contradicts those of the
workers. Real design processes are surrounded
by many conflicting interests: the conflicts be-
tween management and labor, workers collec-
tives which question why they should do a job
that they are not hired to do: help management
design computer applications, and conflicts
among groups of workers who belong to
different trades. Another simplification, closely
related to our neglect of conflicts, concerns the
rationality of the cooperation in the design pro-
cess described: it does not differ significantly
from the small research group ideal discussed in
the beginning of our paper.

To get beyond the small research group ideal
and reach a fuller understanding of what coop-
eration means in real life situations is a major
challenge for our research program. Not least
because design is a process of change in which
the tools and materials of a group are often re-
placed by something new. If we restrict our-
selves to the shared material, shared tools, etc.
definition, we cannot understand how groups
cope with situations of change, such as design,
when their traditional "sharedness" - the tools
and materials - are taken away from them. Such
a group needs not only cooperative work as an
ideal, but as a (design) process leading in a
democratic direction.

393

REFERENCES

1.

10.

11.

12.

13.

Bjerknes, G. et al. (eds.): Computers and
Democracy — a Scandinavian Challenge,
Avebury 1987.

Bgdker, S. et al.: A Utopian Experience, in
[1].

Bgdker, S.: Through the Interface — a Hu-
man Activity Approach to User Interface
Design, DAIMI PB-224, Computer Science
Department, University of Aarhus, 1987.
Bogh Andersen, P. et al.: Research Pro-
gramme on Computer Support in Coop-
erative Design and Communication, DAIMI
IR-70, Computer Science Department,
University of Aarhus, 1987.

Bpgh Andersen, P., Knudsen, J.L.: Se-
mantics for Interactive Graphical Systems,
Preliminary version, Computer Science
Department, Aarhus University, 1988.
Conklin, J.: Hypertext: An Introduction
and Survey, IEEE Computer, 20(9),
September 1987.

Dreyfus, H. L., Dreyfus, S. D.: Mind over
Machine — the power of human intuition
and expertise in the era of the computer,
Basil Blackwell, 1986.

Ehn, P., Sandberg, A.: Local Union In-
fluence on Technology and Work Orga-
nization, some results from the Demos
Project, in Briefs, U. et al. (eds.): System
Design, for, with, and by the user, North-
Holland, 1983.

Ehn, P., Kyng, M.: The Collective Re-
source Approach to Systems Design in [1].
Ehn, P.: Work-Oriented Design of Com-
puter Artifacts, Almqvist & Wiksell Inter-
national, Falk6ping, 1988.

Goldberg, A., Robson, D.: Smalltalk-80:
The Language and its Implementation, Ad-
dison-Wesley Publishing Company, 1985.
Human Interface Guidelines: The Apple
Desktop Interface, Addison-Wesley Pub-
lishing Company, 1987.

HyperCard User’'s Guide, Apple Com-
puter, 1987.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Johnson, B., Weaver G.: Using a Com-
puter-Based Tool to Support Collaboration:

nt 121
L T1€1C Ayvxuuput, mn L‘.J_]
Knudsen, J.L., Madsen, O.L.: Teaching
Object-Orientcd Programming is more that
Teaching Object-Oriented Programming
Languages, in Proceedings of Second Eu-
ropean Conference on Object-Oriented

Programming (ECOOP'88), Oslo, Nor-
way, _Ancrnct 1088,

A mDe 250

Knstensen B.B. et al.: The BETA Pro-
gramming Language, in Shriver, B., Weg-
ner, P. (eds.): Research Directions in Ob-
ject-Oriented Programming, MIT Press,
1987.

Kyng, M., Mathiassen, L.: Systems De-
velopment and Trade Union Activities, in
Bjgrn-Andersen, N. (ed.): Information So-
ciety, for Richer, for Poorer, North-Hol-
land, 1982.

Lysgaard, S.: Arbeiderkollektivet, Univer-
sitetsforlaget, Oslo 1976 (In Norwegian).
NeWS Technical Overview, Sun Technical
Report, 800-1498-05, 1987.

Noddings, N.: Caring. A Feminine Ap-
proach To Ethics & Moral Education, Uni-
versity of California Press, 1984.

Polanyi, M.: Personal Knowledge, Rut-
ledge & Kegan Paul, 1967.

PostScript Language Reference Manual,
Addison-Wesley Publishing Company,
1985.

N»
~

394

28.

29.

30.

31.

. Proceedings of the Conference on Com-

puter-Supported Cooperative Work, 1986.

Clia - PR, ~ T S e e e aan n s
. Shiel, B.: Power Tools for Programmers,

Datamation, 29(2), February 1983.

. Stasz, C., Bikson, T.: Computer-Sup-

ported Cooperative Work: Examples and
Issues in One Federal Agency, in [23].

. Sgrgaard, P.: A cooperative work per-

spective on use and development of com-
Tdrvinen P. (ed N Prao.

nuter artifacts (ed.):]

) Qi MLAWIDy JALX V1iiwily A

ceedings of the 10th Information Systems
Research Seminar in Scandinavia, Tam-
pere, 1987.

LA "

. Tanner, P., Buxton, W.: Some Issues in

Future User Interface Management System
(UIMS) Development in Pfaff, G.(ed.):
User Interface Management Systems,
Springer Verlag 1985..

VideoWorks II Manual, MacroMind, Inc.,
1987.

Winograd, T., Flores, C. F.: Under-
standing Computers and Cognition: A New
Foundation for Design, Ablex Publishing
Compagny, 1986.

Wittgenstein, L.: Philosophical Investi-
gations, Oxford University Press, 1953.
Yankelovich, N. et al.: Intermedia: The
Concept and the Construction of a Seam-
less Information Environment, IEEE Com-
puter, 21(1), January 1988.

